Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries
A superior monoclinic NaVPO4F nanoplate for Na-ion batteries has been prepared by a molten-state-blending technique. By this molecular level blending method, a nanoscale-laminated NaVPO4F@C sample with high crystallinity can be obtained. High thermal stability, stable Na+ insertion/extraction and su...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (47), p.24201-24209 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24209 |
---|---|
container_issue | 47 |
container_start_page | 24201 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Ling, Moxiang Li, Fan Yi, Hongming Li, Xianfeng Hou, Guangjin Zheng, Qiong Zhang, Huamin |
description | A superior monoclinic NaVPO4F nanoplate for Na-ion batteries has been prepared by a molten-state-blending technique. By this molecular level blending method, a nanoscale-laminated NaVPO4F@C sample with high crystallinity can be obtained. High thermal stability, stable Na+ insertion/extraction and superior electron/Na+ transport of NaVPO4F have been elucidated by temperature-dependent IR, in situ XRD and kinetic investigations. Accordingly, the as-prepared NaVPO4F with moderate carbon coating exhibits superior Na-storage performance. It can deliver a high initial specific capacity of 135.0 mA h g−1 at 0.2C, ultra-high rate performance (up to 112.1 mA h g−1 at 30C) and super-stable cycling performance (capacity fading rate of 0.0064% per cycle during 1500 cycles at 20C). The potential application of NaVPO4F as the anode has been explored, and a symmetrical battery with NaVPO4F as both the anode and cathode has been successfully assembled for the first time. More significantly, in situ XRD and ex situ NMR have been employed to explore the charge–discharge behavior in a Na-ion battery, and the result clearly demonstrates that less than one Na has been intercalated/extracted from NaVPO4F during the charging/discharging process. |
doi_str_mv | 10.1039/c8ta08842j |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2149190393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149190393</sourcerecordid><originalsourceid>FETCH-LOGICAL-g222t-99a33d660c7dd02efefce8ecc7dd5c774cf09d66c2e3e21e8ec14fbb693543c13</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWGpvfIKA19Gcdje5lGJVKFbwcFuy2cm6yzapmyyiT29KxbmZwz_z_TAIXTJ6zajQN1YlQ5WSvD9BM04LSiqpy9P_WqlztIixpzkUpaXWM_T1Mu1h7MKInwyJKYymBZwnLow74y3g4PAuDAl8Vk0CUg_gm863JH779AGx-4Emb_hgh853NmPenzdyhb3xYT_ki4jdkd4Fj2uTUraDeIHOnBkiLP7yHL2t7l6XD2S9uX9c3q5JyzlPRGsjRFOW1FZNQzk4cBYU2ENb2KqS1lGddctBAGcHiUlX16UWhRSWiTm6OnL3Y_icIKZtH6bRZ8stZ1IznR8nxC8kV2FU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149190393</pqid></control><display><type>article</type><title>Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ling, Moxiang ; Li, Fan ; Yi, Hongming ; Li, Xianfeng ; Hou, Guangjin ; Zheng, Qiong ; Zhang, Huamin</creator><creatorcontrib>Ling, Moxiang ; Li, Fan ; Yi, Hongming ; Li, Xianfeng ; Hou, Guangjin ; Zheng, Qiong ; Zhang, Huamin</creatorcontrib><description>A superior monoclinic NaVPO4F nanoplate for Na-ion batteries has been prepared by a molten-state-blending technique. By this molecular level blending method, a nanoscale-laminated NaVPO4F@C sample with high crystallinity can be obtained. High thermal stability, stable Na+ insertion/extraction and superior electron/Na+ transport of NaVPO4F have been elucidated by temperature-dependent IR, in situ XRD and kinetic investigations. Accordingly, the as-prepared NaVPO4F with moderate carbon coating exhibits superior Na-storage performance. It can deliver a high initial specific capacity of 135.0 mA h g−1 at 0.2C, ultra-high rate performance (up to 112.1 mA h g−1 at 30C) and super-stable cycling performance (capacity fading rate of 0.0064% per cycle during 1500 cycles at 20C). The potential application of NaVPO4F as the anode has been explored, and a symmetrical battery with NaVPO4F as both the anode and cathode has been successfully assembled for the first time. More significantly, in situ XRD and ex situ NMR have been employed to explore the charge–discharge behavior in a Na-ion battery, and the result clearly demonstrates that less than one Na has been intercalated/extracted from NaVPO4F during the charging/discharging process.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta08842j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Blending ; Chemical synthesis ; Discharge ; NMR ; Nuclear magnetic resonance ; Rechargeable batteries ; Sodium-ion batteries ; Specific capacity ; Storage ; Storage batteries ; Temperature dependence ; Thermal stability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (47), p.24201-24209</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ling, Moxiang</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Yi, Hongming</creatorcontrib><creatorcontrib>Li, Xianfeng</creatorcontrib><creatorcontrib>Hou, Guangjin</creatorcontrib><creatorcontrib>Zheng, Qiong</creatorcontrib><creatorcontrib>Zhang, Huamin</creatorcontrib><title>Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>A superior monoclinic NaVPO4F nanoplate for Na-ion batteries has been prepared by a molten-state-blending technique. By this molecular level blending method, a nanoscale-laminated NaVPO4F@C sample with high crystallinity can be obtained. High thermal stability, stable Na+ insertion/extraction and superior electron/Na+ transport of NaVPO4F have been elucidated by temperature-dependent IR, in situ XRD and kinetic investigations. Accordingly, the as-prepared NaVPO4F with moderate carbon coating exhibits superior Na-storage performance. It can deliver a high initial specific capacity of 135.0 mA h g−1 at 0.2C, ultra-high rate performance (up to 112.1 mA h g−1 at 30C) and super-stable cycling performance (capacity fading rate of 0.0064% per cycle during 1500 cycles at 20C). The potential application of NaVPO4F as the anode has been explored, and a symmetrical battery with NaVPO4F as both the anode and cathode has been successfully assembled for the first time. More significantly, in situ XRD and ex situ NMR have been employed to explore the charge–discharge behavior in a Na-ion battery, and the result clearly demonstrates that less than one Na has been intercalated/extracted from NaVPO4F during the charging/discharging process.</description><subject>Anodes</subject><subject>Blending</subject><subject>Chemical synthesis</subject><subject>Discharge</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Specific capacity</subject><subject>Storage</subject><subject>Storage batteries</subject><subject>Temperature dependence</subject><subject>Thermal stability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEQhoMoWGpvfIKA19Gcdje5lGJVKFbwcFuy2cm6yzapmyyiT29KxbmZwz_z_TAIXTJ6zajQN1YlQ5WSvD9BM04LSiqpy9P_WqlztIixpzkUpaXWM_T1Mu1h7MKInwyJKYymBZwnLow74y3g4PAuDAl8Vk0CUg_gm863JH779AGx-4Emb_hgh853NmPenzdyhb3xYT_ki4jdkd4Fj2uTUraDeIHOnBkiLP7yHL2t7l6XD2S9uX9c3q5JyzlPRGsjRFOW1FZNQzk4cBYU2ENb2KqS1lGddctBAGcHiUlX16UWhRSWiTm6OnL3Y_icIKZtH6bRZ8stZ1IznR8nxC8kV2FU</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Ling, Moxiang</creator><creator>Li, Fan</creator><creator>Yi, Hongming</creator><creator>Li, Xianfeng</creator><creator>Hou, Guangjin</creator><creator>Zheng, Qiong</creator><creator>Zhang, Huamin</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2018</creationdate><title>Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries</title><author>Ling, Moxiang ; Li, Fan ; Yi, Hongming ; Li, Xianfeng ; Hou, Guangjin ; Zheng, Qiong ; Zhang, Huamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g222t-99a33d660c7dd02efefce8ecc7dd5c774cf09d66c2e3e21e8ec14fbb693543c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Blending</topic><topic>Chemical synthesis</topic><topic>Discharge</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Specific capacity</topic><topic>Storage</topic><topic>Storage batteries</topic><topic>Temperature dependence</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Moxiang</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Yi, Hongming</creatorcontrib><creatorcontrib>Li, Xianfeng</creatorcontrib><creatorcontrib>Hou, Guangjin</creatorcontrib><creatorcontrib>Zheng, Qiong</creatorcontrib><creatorcontrib>Zhang, Huamin</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Moxiang</au><au>Li, Fan</au><au>Yi, Hongming</au><au>Li, Xianfeng</au><au>Hou, Guangjin</au><au>Zheng, Qiong</au><au>Zhang, Huamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>47</issue><spage>24201</spage><epage>24209</epage><pages>24201-24209</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>A superior monoclinic NaVPO4F nanoplate for Na-ion batteries has been prepared by a molten-state-blending technique. By this molecular level blending method, a nanoscale-laminated NaVPO4F@C sample with high crystallinity can be obtained. High thermal stability, stable Na+ insertion/extraction and superior electron/Na+ transport of NaVPO4F have been elucidated by temperature-dependent IR, in situ XRD and kinetic investigations. Accordingly, the as-prepared NaVPO4F with moderate carbon coating exhibits superior Na-storage performance. It can deliver a high initial specific capacity of 135.0 mA h g−1 at 0.2C, ultra-high rate performance (up to 112.1 mA h g−1 at 30C) and super-stable cycling performance (capacity fading rate of 0.0064% per cycle during 1500 cycles at 20C). The potential application of NaVPO4F as the anode has been explored, and a symmetrical battery with NaVPO4F as both the anode and cathode has been successfully assembled for the first time. More significantly, in situ XRD and ex situ NMR have been employed to explore the charge–discharge behavior in a Na-ion battery, and the result clearly demonstrates that less than one Na has been intercalated/extracted from NaVPO4F during the charging/discharging process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta08842j</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (47), p.24201-24209 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2149190393 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Blending Chemical synthesis Discharge NMR Nuclear magnetic resonance Rechargeable batteries Sodium-ion batteries Specific capacity Storage Storage batteries Temperature dependence Thermal stability |
title | Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Na-storage%20performance%20of%20molten-state-blending-synthesized%20monoclinic%20NaVPO4F%20nanoplates%20for%20Na-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ling,%20Moxiang&rft.date=2018&rft.volume=6&rft.issue=47&rft.spage=24201&rft.epage=24209&rft.pages=24201-24209&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta08842j&rft_dat=%3Cproquest%3E2149190393%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149190393&rft_id=info:pmid/&rfr_iscdi=true |