A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite
Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers d...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018-01, Vol.6 (47), p.24560-24568 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24568 |
---|---|
container_issue | 47 |
container_start_page | 24560 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Kisu, Lee Kim, Jungwon Yu, Haejun Jong Woo Lee Chang-Min, Yoon Kim, Seong Keun Jang, Jyongsik |
description | Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers degrade the power conversion efficiency (PCE) of carbon-based PSCs. Here we report on an innovative method to post-treat a carbon electrode with phenylethylammonium iodide (PEAI), for the growth of a two-dimensional (2D) perovskite at the interface between the perovskite and carbon layers. The resulting ultrathin PEA2PbI4 layer formed within the perovskite/carbon interface improved the poor perovskite/carbon contact. The favorable conduction and valence energy levels of the 2D perovskite interlayer greatly suppressed interfacial charge recombination, which stems from the absence of an HTM. Using our fabrication method, the average PCE of devices was boosted from 11.5% to 14.5% with minimal hysteresis loss, and a maximum PCE of 15.6% was achieved. Moreover, the PEAI-treated devices showed excellent ambient stability. The dual protection of the hydrophobic carbon and 2D perovskite layers enabled the device to retain 92% of its initial PCE after 1000 h of exposure to ambient conditions (relative humidity: 40 ± 5%). The thermal stability of the devices was also enhanced, showing no efficiency loss after thermal testing at 150 °C, due to suppressed ion migration. |
doi_str_mv | 10.1039/c8ta09433k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2149189351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149189351</sourcerecordid><originalsourceid>FETCH-LOGICAL-g203t-339c83dc9ccb65369ff3679e83e6d6b3cc4e3f8b0cc9a0dfdeedd5a9c490958a3</originalsourceid><addsrcrecordid>eNpNjU1LAzEURYMoWGo3_oKA69HMZGaatyy1fkDBLnRdMi8vnbRhUpO04t4fbkER7-ZeOHAuY9eluC2FhDtUWQuopdydsVElGlFMa2jP_7ZSl2yS0lacooRoAUbsa8Z7t-n9J09Zd564Hgwnax06GjJHHbswcPKEOQZDRacTGb6nGI5p5zLxFLyOHMl7rrF3dDzho9PcDZmi1ei055sYPnLPg-XVPV8tZtWqe67_Sa7YhdU-0eS3x-ztYfE6fyqWL4_P89my2FRC5kJKQCUNAmLXNrIFa2U7BVKSWtN2ErEmaVUnEEELYw2RMY0GrEFAo7Qcs5sf7z6G9wOlvN6GQxxOl-uqrKFUIJtSfgOlz2TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149189351</pqid></control><display><type>article</type><title>A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kisu, Lee ; Kim, Jungwon ; Yu, Haejun ; Jong Woo Lee ; Chang-Min, Yoon ; Kim, Seong Keun ; Jang, Jyongsik</creator><creatorcontrib>Kisu, Lee ; Kim, Jungwon ; Yu, Haejun ; Jong Woo Lee ; Chang-Min, Yoon ; Kim, Seong Keun ; Jang, Jyongsik</creatorcontrib><description>Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers degrade the power conversion efficiency (PCE) of carbon-based PSCs. Here we report on an innovative method to post-treat a carbon electrode with phenylethylammonium iodide (PEAI), for the growth of a two-dimensional (2D) perovskite at the interface between the perovskite and carbon layers. The resulting ultrathin PEA2PbI4 layer formed within the perovskite/carbon interface improved the poor perovskite/carbon contact. The favorable conduction and valence energy levels of the 2D perovskite interlayer greatly suppressed interfacial charge recombination, which stems from the absence of an HTM. Using our fabrication method, the average PCE of devices was boosted from 11.5% to 14.5% with minimal hysteresis loss, and a maximum PCE of 15.6% was achieved. Moreover, the PEAI-treated devices showed excellent ambient stability. The dual protection of the hydrophobic carbon and 2D perovskite layers enabled the device to retain 92% of its initial PCE after 1000 h of exposure to ambient conditions (relative humidity: 40 ± 5%). The thermal stability of the devices was also enhanced, showing no efficiency loss after thermal testing at 150 °C, due to suppressed ion migration.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta09433k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon ; Charge transport ; Conduction ; Core loss ; Devices ; Electrodes ; Energy conversion efficiency ; Energy levels ; Fabrication ; Hydrophobicity ; Interlayers ; Iodides ; Ion migration ; Parameters ; Perovskites ; Photovoltaic cells ; Photovoltaics ; Pretreatment ; Protective coatings ; Recombination ; Relative humidity ; Solar cells ; Thermal stability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018-01, Vol.6 (47), p.24560-24568</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kisu, Lee</creatorcontrib><creatorcontrib>Kim, Jungwon</creatorcontrib><creatorcontrib>Yu, Haejun</creatorcontrib><creatorcontrib>Jong Woo Lee</creatorcontrib><creatorcontrib>Chang-Min, Yoon</creatorcontrib><creatorcontrib>Kim, Seong Keun</creatorcontrib><creatorcontrib>Jang, Jyongsik</creatorcontrib><title>A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers degrade the power conversion efficiency (PCE) of carbon-based PSCs. Here we report on an innovative method to post-treat a carbon electrode with phenylethylammonium iodide (PEAI), for the growth of a two-dimensional (2D) perovskite at the interface between the perovskite and carbon layers. The resulting ultrathin PEA2PbI4 layer formed within the perovskite/carbon interface improved the poor perovskite/carbon contact. The favorable conduction and valence energy levels of the 2D perovskite interlayer greatly suppressed interfacial charge recombination, which stems from the absence of an HTM. Using our fabrication method, the average PCE of devices was boosted from 11.5% to 14.5% with minimal hysteresis loss, and a maximum PCE of 15.6% was achieved. Moreover, the PEAI-treated devices showed excellent ambient stability. The dual protection of the hydrophobic carbon and 2D perovskite layers enabled the device to retain 92% of its initial PCE after 1000 h of exposure to ambient conditions (relative humidity: 40 ± 5%). The thermal stability of the devices was also enhanced, showing no efficiency loss after thermal testing at 150 °C, due to suppressed ion migration.</description><subject>Carbon</subject><subject>Charge transport</subject><subject>Conduction</subject><subject>Core loss</subject><subject>Devices</subject><subject>Electrodes</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Fabrication</subject><subject>Hydrophobicity</subject><subject>Interlayers</subject><subject>Iodides</subject><subject>Ion migration</subject><subject>Parameters</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Pretreatment</subject><subject>Protective coatings</subject><subject>Recombination</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>Thermal stability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNjU1LAzEURYMoWGo3_oKA69HMZGaatyy1fkDBLnRdMi8vnbRhUpO04t4fbkER7-ZeOHAuY9eluC2FhDtUWQuopdydsVElGlFMa2jP_7ZSl2yS0lacooRoAUbsa8Z7t-n9J09Zd564Hgwnax06GjJHHbswcPKEOQZDRacTGb6nGI5p5zLxFLyOHMl7rrF3dDzho9PcDZmi1ei055sYPnLPg-XVPV8tZtWqe67_Sa7YhdU-0eS3x-ztYfE6fyqWL4_P89my2FRC5kJKQCUNAmLXNrIFa2U7BVKSWtN2ErEmaVUnEEELYw2RMY0GrEFAo7Qcs5sf7z6G9wOlvN6GQxxOl-uqrKFUIJtSfgOlz2TQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kisu, Lee</creator><creator>Kim, Jungwon</creator><creator>Yu, Haejun</creator><creator>Jong Woo Lee</creator><creator>Chang-Min, Yoon</creator><creator>Kim, Seong Keun</creator><creator>Jang, Jyongsik</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180101</creationdate><title>A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite</title><author>Kisu, Lee ; Kim, Jungwon ; Yu, Haejun ; Jong Woo Lee ; Chang-Min, Yoon ; Kim, Seong Keun ; Jang, Jyongsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g203t-339c83dc9ccb65369ff3679e83e6d6b3cc4e3f8b0cc9a0dfdeedd5a9c490958a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Charge transport</topic><topic>Conduction</topic><topic>Core loss</topic><topic>Devices</topic><topic>Electrodes</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Fabrication</topic><topic>Hydrophobicity</topic><topic>Interlayers</topic><topic>Iodides</topic><topic>Ion migration</topic><topic>Parameters</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Pretreatment</topic><topic>Protective coatings</topic><topic>Recombination</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kisu, Lee</creatorcontrib><creatorcontrib>Kim, Jungwon</creatorcontrib><creatorcontrib>Yu, Haejun</creatorcontrib><creatorcontrib>Jong Woo Lee</creatorcontrib><creatorcontrib>Chang-Min, Yoon</creatorcontrib><creatorcontrib>Kim, Seong Keun</creatorcontrib><creatorcontrib>Jang, Jyongsik</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisu, Lee</au><au>Kim, Jungwon</au><au>Yu, Haejun</au><au>Jong Woo Lee</au><au>Chang-Min, Yoon</au><au>Kim, Seong Keun</au><au>Jang, Jyongsik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><issue>47</issue><spage>24560</spage><epage>24568</epage><pages>24560-24568</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers degrade the power conversion efficiency (PCE) of carbon-based PSCs. Here we report on an innovative method to post-treat a carbon electrode with phenylethylammonium iodide (PEAI), for the growth of a two-dimensional (2D) perovskite at the interface between the perovskite and carbon layers. The resulting ultrathin PEA2PbI4 layer formed within the perovskite/carbon interface improved the poor perovskite/carbon contact. The favorable conduction and valence energy levels of the 2D perovskite interlayer greatly suppressed interfacial charge recombination, which stems from the absence of an HTM. Using our fabrication method, the average PCE of devices was boosted from 11.5% to 14.5% with minimal hysteresis loss, and a maximum PCE of 15.6% was achieved. Moreover, the PEAI-treated devices showed excellent ambient stability. The dual protection of the hydrophobic carbon and 2D perovskite layers enabled the device to retain 92% of its initial PCE after 1000 h of exposure to ambient conditions (relative humidity: 40 ± 5%). The thermal stability of the devices was also enhanced, showing no efficiency loss after thermal testing at 150 °C, due to suppressed ion migration.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta09433k</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018-01, Vol.6 (47), p.24560-24568 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2149189351 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon Charge transport Conduction Core loss Devices Electrodes Energy conversion efficiency Energy levels Fabrication Hydrophobicity Interlayers Iodides Ion migration Parameters Perovskites Photovoltaic cells Photovoltaics Pretreatment Protective coatings Recombination Relative humidity Solar cells Thermal stability |
title | A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20stable%20and%20efficient%20carbon%20electrode-based%20perovskite%20solar%20cell%20achieved%20via%20interfacial%20growth%20of%202D%20PEA2PbI4%20perovskite&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kisu,%20Lee&rft.date=2018-01-01&rft.volume=6&rft.issue=47&rft.spage=24560&rft.epage=24568&rft.pages=24560-24568&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta09433k&rft_dat=%3Cproquest%3E2149189351%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149189351&rft_id=info:pmid/&rfr_iscdi=true |