A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite

Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018-01, Vol.6 (47), p.24560-24568
Hauptverfasser: Kisu, Lee, Kim, Jungwon, Yu, Haejun, Jong Woo Lee, Chang-Min, Yoon, Kim, Seong Keun, Jang, Jyongsik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24568
container_issue 47
container_start_page 24560
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Kisu, Lee
Kim, Jungwon
Yu, Haejun
Jong Woo Lee
Chang-Min, Yoon
Kim, Seong Keun
Jang, Jyongsik
description Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers degrade the power conversion efficiency (PCE) of carbon-based PSCs. Here we report on an innovative method to post-treat a carbon electrode with phenylethylammonium iodide (PEAI), for the growth of a two-dimensional (2D) perovskite at the interface between the perovskite and carbon layers. The resulting ultrathin PEA2PbI4 layer formed within the perovskite/carbon interface improved the poor perovskite/carbon contact. The favorable conduction and valence energy levels of the 2D perovskite interlayer greatly suppressed interfacial charge recombination, which stems from the absence of an HTM. Using our fabrication method, the average PCE of devices was boosted from 11.5% to 14.5% with minimal hysteresis loss, and a maximum PCE of 15.6% was achieved. Moreover, the PEAI-treated devices showed excellent ambient stability. The dual protection of the hydrophobic carbon and 2D perovskite layers enabled the device to retain 92% of its initial PCE after 1000 h of exposure to ambient conditions (relative humidity: 40 ± 5%). The thermal stability of the devices was also enhanced, showing no efficiency loss after thermal testing at 150 °C, due to suppressed ion migration.
doi_str_mv 10.1039/c8ta09433k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2149189351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149189351</sourcerecordid><originalsourceid>FETCH-LOGICAL-g203t-339c83dc9ccb65369ff3679e83e6d6b3cc4e3f8b0cc9a0dfdeedd5a9c490958a3</originalsourceid><addsrcrecordid>eNpNjU1LAzEURYMoWGo3_oKA69HMZGaatyy1fkDBLnRdMi8vnbRhUpO04t4fbkER7-ZeOHAuY9eluC2FhDtUWQuopdydsVElGlFMa2jP_7ZSl2yS0lacooRoAUbsa8Z7t-n9J09Zd564Hgwnax06GjJHHbswcPKEOQZDRacTGb6nGI5p5zLxFLyOHMl7rrF3dDzho9PcDZmi1ei055sYPnLPg-XVPV8tZtWqe67_Sa7YhdU-0eS3x-ztYfE6fyqWL4_P89my2FRC5kJKQCUNAmLXNrIFa2U7BVKSWtN2ErEmaVUnEEELYw2RMY0GrEFAo7Qcs5sf7z6G9wOlvN6GQxxOl-uqrKFUIJtSfgOlz2TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149189351</pqid></control><display><type>article</type><title>A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kisu, Lee ; Kim, Jungwon ; Yu, Haejun ; Jong Woo Lee ; Chang-Min, Yoon ; Kim, Seong Keun ; Jang, Jyongsik</creator><creatorcontrib>Kisu, Lee ; Kim, Jungwon ; Yu, Haejun ; Jong Woo Lee ; Chang-Min, Yoon ; Kim, Seong Keun ; Jang, Jyongsik</creatorcontrib><description>Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers degrade the power conversion efficiency (PCE) of carbon-based PSCs. Here we report on an innovative method to post-treat a carbon electrode with phenylethylammonium iodide (PEAI), for the growth of a two-dimensional (2D) perovskite at the interface between the perovskite and carbon layers. The resulting ultrathin PEA2PbI4 layer formed within the perovskite/carbon interface improved the poor perovskite/carbon contact. The favorable conduction and valence energy levels of the 2D perovskite interlayer greatly suppressed interfacial charge recombination, which stems from the absence of an HTM. Using our fabrication method, the average PCE of devices was boosted from 11.5% to 14.5% with minimal hysteresis loss, and a maximum PCE of 15.6% was achieved. Moreover, the PEAI-treated devices showed excellent ambient stability. The dual protection of the hydrophobic carbon and 2D perovskite layers enabled the device to retain 92% of its initial PCE after 1000 h of exposure to ambient conditions (relative humidity: 40 ± 5%). The thermal stability of the devices was also enhanced, showing no efficiency loss after thermal testing at 150 °C, due to suppressed ion migration.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta09433k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon ; Charge transport ; Conduction ; Core loss ; Devices ; Electrodes ; Energy conversion efficiency ; Energy levels ; Fabrication ; Hydrophobicity ; Interlayers ; Iodides ; Ion migration ; Parameters ; Perovskites ; Photovoltaic cells ; Photovoltaics ; Pretreatment ; Protective coatings ; Recombination ; Relative humidity ; Solar cells ; Thermal stability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018-01, Vol.6 (47), p.24560-24568</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kisu, Lee</creatorcontrib><creatorcontrib>Kim, Jungwon</creatorcontrib><creatorcontrib>Yu, Haejun</creatorcontrib><creatorcontrib>Jong Woo Lee</creatorcontrib><creatorcontrib>Chang-Min, Yoon</creatorcontrib><creatorcontrib>Kim, Seong Keun</creatorcontrib><creatorcontrib>Jang, Jyongsik</creatorcontrib><title>A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers degrade the power conversion efficiency (PCE) of carbon-based PSCs. Here we report on an innovative method to post-treat a carbon electrode with phenylethylammonium iodide (PEAI), for the growth of a two-dimensional (2D) perovskite at the interface between the perovskite and carbon layers. The resulting ultrathin PEA2PbI4 layer formed within the perovskite/carbon interface improved the poor perovskite/carbon contact. The favorable conduction and valence energy levels of the 2D perovskite interlayer greatly suppressed interfacial charge recombination, which stems from the absence of an HTM. Using our fabrication method, the average PCE of devices was boosted from 11.5% to 14.5% with minimal hysteresis loss, and a maximum PCE of 15.6% was achieved. Moreover, the PEAI-treated devices showed excellent ambient stability. The dual protection of the hydrophobic carbon and 2D perovskite layers enabled the device to retain 92% of its initial PCE after 1000 h of exposure to ambient conditions (relative humidity: 40 ± 5%). The thermal stability of the devices was also enhanced, showing no efficiency loss after thermal testing at 150 °C, due to suppressed ion migration.</description><subject>Carbon</subject><subject>Charge transport</subject><subject>Conduction</subject><subject>Core loss</subject><subject>Devices</subject><subject>Electrodes</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Fabrication</subject><subject>Hydrophobicity</subject><subject>Interlayers</subject><subject>Iodides</subject><subject>Ion migration</subject><subject>Parameters</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Pretreatment</subject><subject>Protective coatings</subject><subject>Recombination</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>Thermal stability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNjU1LAzEURYMoWGo3_oKA69HMZGaatyy1fkDBLnRdMi8vnbRhUpO04t4fbkER7-ZeOHAuY9eluC2FhDtUWQuopdydsVElGlFMa2jP_7ZSl2yS0lacooRoAUbsa8Z7t-n9J09Zd564Hgwnax06GjJHHbswcPKEOQZDRacTGb6nGI5p5zLxFLyOHMl7rrF3dDzho9PcDZmi1ei055sYPnLPg-XVPV8tZtWqe67_Sa7YhdU-0eS3x-ztYfE6fyqWL4_P89my2FRC5kJKQCUNAmLXNrIFa2U7BVKSWtN2ErEmaVUnEEELYw2RMY0GrEFAo7Qcs5sf7z6G9wOlvN6GQxxOl-uqrKFUIJtSfgOlz2TQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kisu, Lee</creator><creator>Kim, Jungwon</creator><creator>Yu, Haejun</creator><creator>Jong Woo Lee</creator><creator>Chang-Min, Yoon</creator><creator>Kim, Seong Keun</creator><creator>Jang, Jyongsik</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180101</creationdate><title>A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite</title><author>Kisu, Lee ; Kim, Jungwon ; Yu, Haejun ; Jong Woo Lee ; Chang-Min, Yoon ; Kim, Seong Keun ; Jang, Jyongsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g203t-339c83dc9ccb65369ff3679e83e6d6b3cc4e3f8b0cc9a0dfdeedd5a9c490958a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Charge transport</topic><topic>Conduction</topic><topic>Core loss</topic><topic>Devices</topic><topic>Electrodes</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Fabrication</topic><topic>Hydrophobicity</topic><topic>Interlayers</topic><topic>Iodides</topic><topic>Ion migration</topic><topic>Parameters</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Pretreatment</topic><topic>Protective coatings</topic><topic>Recombination</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kisu, Lee</creatorcontrib><creatorcontrib>Kim, Jungwon</creatorcontrib><creatorcontrib>Yu, Haejun</creatorcontrib><creatorcontrib>Jong Woo Lee</creatorcontrib><creatorcontrib>Chang-Min, Yoon</creatorcontrib><creatorcontrib>Kim, Seong Keun</creatorcontrib><creatorcontrib>Jang, Jyongsik</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisu, Lee</au><au>Kim, Jungwon</au><au>Yu, Haejun</au><au>Jong Woo Lee</au><au>Chang-Min, Yoon</au><au>Kim, Seong Keun</au><au>Jang, Jyongsik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><issue>47</issue><spage>24560</spage><epage>24568</epage><pages>24560-24568</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Carbon electrode-based perovskite solar cells (PSCs) without hole transport materials (HTMs) are regarded as a promising alternative architecture to realize low-cost, stable photovoltaics. However, poor hole transport and severe charge recombination at the interface of perovskite and carbon layers degrade the power conversion efficiency (PCE) of carbon-based PSCs. Here we report on an innovative method to post-treat a carbon electrode with phenylethylammonium iodide (PEAI), for the growth of a two-dimensional (2D) perovskite at the interface between the perovskite and carbon layers. The resulting ultrathin PEA2PbI4 layer formed within the perovskite/carbon interface improved the poor perovskite/carbon contact. The favorable conduction and valence energy levels of the 2D perovskite interlayer greatly suppressed interfacial charge recombination, which stems from the absence of an HTM. Using our fabrication method, the average PCE of devices was boosted from 11.5% to 14.5% with minimal hysteresis loss, and a maximum PCE of 15.6% was achieved. Moreover, the PEAI-treated devices showed excellent ambient stability. The dual protection of the hydrophobic carbon and 2D perovskite layers enabled the device to retain 92% of its initial PCE after 1000 h of exposure to ambient conditions (relative humidity: 40 ± 5%). The thermal stability of the devices was also enhanced, showing no efficiency loss after thermal testing at 150 °C, due to suppressed ion migration.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta09433k</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018-01, Vol.6 (47), p.24560-24568
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2149189351
source Royal Society Of Chemistry Journals 2008-
subjects Carbon
Charge transport
Conduction
Core loss
Devices
Electrodes
Energy conversion efficiency
Energy levels
Fabrication
Hydrophobicity
Interlayers
Iodides
Ion migration
Parameters
Perovskites
Photovoltaic cells
Photovoltaics
Pretreatment
Protective coatings
Recombination
Relative humidity
Solar cells
Thermal stability
title A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20stable%20and%20efficient%20carbon%20electrode-based%20perovskite%20solar%20cell%20achieved%20via%20interfacial%20growth%20of%202D%20PEA2PbI4%20perovskite&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kisu,%20Lee&rft.date=2018-01-01&rft.volume=6&rft.issue=47&rft.spage=24560&rft.epage=24568&rft.pages=24560-24568&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta09433k&rft_dat=%3Cproquest%3E2149189351%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149189351&rft_id=info:pmid/&rfr_iscdi=true