An accelerated Poisson solver based on multidomain spectral discretization

This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2018-12, Vol.58 (4), p.851-879
Hauptverfasser: Babb, Tracy, Gillman, Adrianna, Hao, Sijia, Martinsson, Per-Gunnar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 879
container_issue 4
container_start_page 851
container_title BIT
container_volume 58
creator Babb, Tracy
Gillman, Adrianna
Hao, Sijia
Martinsson, Per-Gunnar
description This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domain spectral collocation method of high local order (order 30 and higher have been tested and work well). Local mesh refinement results in highly accurate solutions even in the presence of local irregular behavior due to corner singularities, localized loads, etc. The system of linear equations attained upon discretization is solved using a direct (as opposed to iterative) solver with O ( N 1.5 ) complexity for the factorization stage and O ( N log N ) complexity for the solve. The scheme is ideally suited for executing the elliptic solve required when parabolic problems are discretized via time-implicit techniques. In situations where the geometry remains unchanged between time-steps, very fast execution speeds are obtained since the solution operator for each implicit solve can be pre-computed.
doi_str_mv 10.1007/s10543-018-0714-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2149074960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149074960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d9adf3559f9889c201ed1d3e6bb6989be9659ac63fe5bfb2aef4708af7d8b2ae3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FJ0rTNcVn8y4Ie9BzSZCJZus2adAX99LZU8ORpeDPvvYEfIZcMrhlAfZMZyFJQYA2FmpUUjsiCyZpTxbg8JgsAqKhohDwlZzlvAbiqmFiQp1VfGGuxw2QGdMVLDDnHvsix-8RUtCaPy1HvDt0QXNyZMN72aIdkusKFbBMO4dsMIfbn5MSbLuPF71ySt7vb1_UD3TzfP65XG2qFVAN1yjgvpFReNY2yHBg65gRWbVupRrWoKqmMrYRH2fqWG_RlDY3xtWsmJZbkau7dp_hxwDzobTykfnypOSsV1KWqYHSx2WVTzDmh1_sUdiZ9aQZ6QqZnZHpEpidkesrwOZNHb_-O6a_5_9APJ_Jv5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149074960</pqid></control><display><type>article</type><title>An accelerated Poisson solver based on multidomain spectral discretization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Babb, Tracy ; Gillman, Adrianna ; Hao, Sijia ; Martinsson, Per-Gunnar</creator><creatorcontrib>Babb, Tracy ; Gillman, Adrianna ; Hao, Sijia ; Martinsson, Per-Gunnar</creatorcontrib><description>This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domain spectral collocation method of high local order (order 30 and higher have been tested and work well). Local mesh refinement results in highly accurate solutions even in the presence of local irregular behavior due to corner singularities, localized loads, etc. The system of linear equations attained upon discretization is solved using a direct (as opposed to iterative) solver with O ( N 1.5 ) complexity for the factorization stage and O ( N log N ) complexity for the solve. The scheme is ideally suited for executing the elliptic solve required when parabolic problems are discretized via time-implicit techniques. In situations where the geometry remains unchanged between time-steps, very fast execution speeds are obtained since the solution operator for each implicit solve can be pre-computed.</description><identifier>ISSN: 0006-3835</identifier><identifier>EISSN: 1572-9125</identifier><identifier>DOI: 10.1007/s10543-018-0714-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Collocation methods ; Complexity ; Computational Mathematics and Numerical Analysis ; Discretization ; Domains ; Grid refinement (mathematics) ; Iterative methods ; Linear equations ; Mathematics ; Mathematics and Statistics ; Numeric Computing ; Numerical methods ; Rectangles ; Singularities</subject><ispartof>BIT, 2018-12, Vol.58 (4), p.851-879</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d9adf3559f9889c201ed1d3e6bb6989be9659ac63fe5bfb2aef4708af7d8b2ae3</citedby><cites>FETCH-LOGICAL-c359t-d9adf3559f9889c201ed1d3e6bb6989be9659ac63fe5bfb2aef4708af7d8b2ae3</cites><orcidid>0000-0002-1048-5270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10543-018-0714-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10543-018-0714-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Babb, Tracy</creatorcontrib><creatorcontrib>Gillman, Adrianna</creatorcontrib><creatorcontrib>Hao, Sijia</creatorcontrib><creatorcontrib>Martinsson, Per-Gunnar</creatorcontrib><title>An accelerated Poisson solver based on multidomain spectral discretization</title><title>BIT</title><addtitle>Bit Numer Math</addtitle><description>This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domain spectral collocation method of high local order (order 30 and higher have been tested and work well). Local mesh refinement results in highly accurate solutions even in the presence of local irregular behavior due to corner singularities, localized loads, etc. The system of linear equations attained upon discretization is solved using a direct (as opposed to iterative) solver with O ( N 1.5 ) complexity for the factorization stage and O ( N log N ) complexity for the solve. The scheme is ideally suited for executing the elliptic solve required when parabolic problems are discretized via time-implicit techniques. In situations where the geometry remains unchanged between time-steps, very fast execution speeds are obtained since the solution operator for each implicit solve can be pre-computed.</description><subject>Collocation methods</subject><subject>Complexity</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discretization</subject><subject>Domains</subject><subject>Grid refinement (mathematics)</subject><subject>Iterative methods</subject><subject>Linear equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numeric Computing</subject><subject>Numerical methods</subject><subject>Rectangles</subject><subject>Singularities</subject><issn>0006-3835</issn><issn>1572-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FJ0rTNcVn8y4Ie9BzSZCJZus2adAX99LZU8ORpeDPvvYEfIZcMrhlAfZMZyFJQYA2FmpUUjsiCyZpTxbg8JgsAqKhohDwlZzlvAbiqmFiQp1VfGGuxw2QGdMVLDDnHvsix-8RUtCaPy1HvDt0QXNyZMN72aIdkusKFbBMO4dsMIfbn5MSbLuPF71ySt7vb1_UD3TzfP65XG2qFVAN1yjgvpFReNY2yHBg65gRWbVupRrWoKqmMrYRH2fqWG_RlDY3xtWsmJZbkau7dp_hxwDzobTykfnypOSsV1KWqYHSx2WVTzDmh1_sUdiZ9aQZ6QqZnZHpEpidkesrwOZNHb_-O6a_5_9APJ_Jv5w</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Babb, Tracy</creator><creator>Gillman, Adrianna</creator><creator>Hao, Sijia</creator><creator>Martinsson, Per-Gunnar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1048-5270</orcidid></search><sort><creationdate>20181201</creationdate><title>An accelerated Poisson solver based on multidomain spectral discretization</title><author>Babb, Tracy ; Gillman, Adrianna ; Hao, Sijia ; Martinsson, Per-Gunnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d9adf3559f9889c201ed1d3e6bb6989be9659ac63fe5bfb2aef4708af7d8b2ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Collocation methods</topic><topic>Complexity</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discretization</topic><topic>Domains</topic><topic>Grid refinement (mathematics)</topic><topic>Iterative methods</topic><topic>Linear equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numeric Computing</topic><topic>Numerical methods</topic><topic>Rectangles</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babb, Tracy</creatorcontrib><creatorcontrib>Gillman, Adrianna</creatorcontrib><creatorcontrib>Hao, Sijia</creatorcontrib><creatorcontrib>Martinsson, Per-Gunnar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>BIT</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babb, Tracy</au><au>Gillman, Adrianna</au><au>Hao, Sijia</au><au>Martinsson, Per-Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accelerated Poisson solver based on multidomain spectral discretization</atitle><jtitle>BIT</jtitle><stitle>Bit Numer Math</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>58</volume><issue>4</issue><spage>851</spage><epage>879</epage><pages>851-879</pages><issn>0006-3835</issn><eissn>1572-9125</eissn><abstract>This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domain spectral collocation method of high local order (order 30 and higher have been tested and work well). Local mesh refinement results in highly accurate solutions even in the presence of local irregular behavior due to corner singularities, localized loads, etc. The system of linear equations attained upon discretization is solved using a direct (as opposed to iterative) solver with O ( N 1.5 ) complexity for the factorization stage and O ( N log N ) complexity for the solve. The scheme is ideally suited for executing the elliptic solve required when parabolic problems are discretized via time-implicit techniques. In situations where the geometry remains unchanged between time-steps, very fast execution speeds are obtained since the solution operator for each implicit solve can be pre-computed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10543-018-0714-0</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1048-5270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3835
ispartof BIT, 2018-12, Vol.58 (4), p.851-879
issn 0006-3835
1572-9125
language eng
recordid cdi_proquest_journals_2149074960
source SpringerLink Journals - AutoHoldings
subjects Collocation methods
Complexity
Computational Mathematics and Numerical Analysis
Discretization
Domains
Grid refinement (mathematics)
Iterative methods
Linear equations
Mathematics
Mathematics and Statistics
Numeric Computing
Numerical methods
Rectangles
Singularities
title An accelerated Poisson solver based on multidomain spectral discretization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accelerated%20Poisson%20solver%20based%20on%20multidomain%20spectral%20discretization&rft.jtitle=BIT&rft.au=Babb,%20Tracy&rft.date=2018-12-01&rft.volume=58&rft.issue=4&rft.spage=851&rft.epage=879&rft.pages=851-879&rft.issn=0006-3835&rft.eissn=1572-9125&rft_id=info:doi/10.1007/s10543-018-0714-0&rft_dat=%3Cproquest_cross%3E2149074960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149074960&rft_id=info:pmid/&rfr_iscdi=true