An accelerated Poisson solver based on multidomain spectral discretization
This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domai...
Gespeichert in:
Veröffentlicht in: | BIT 2018-12, Vol.58 (4), p.851-879 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 879 |
---|---|
container_issue | 4 |
container_start_page | 851 |
container_title | BIT |
container_volume | 58 |
creator | Babb, Tracy Gillman, Adrianna Hao, Sijia Martinsson, Per-Gunnar |
description | This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domain spectral collocation method of high local order (order 30 and higher have been tested and work well). Local mesh refinement results in highly accurate solutions even in the presence of local irregular behavior due to corner singularities, localized loads, etc. The system of linear equations attained upon discretization is solved using a direct (as opposed to iterative) solver with
O
(
N
1.5
)
complexity for the factorization stage and
O
(
N
log
N
)
complexity for the solve. The scheme is ideally suited for executing the elliptic solve required when parabolic problems are discretized via time-implicit techniques. In situations where the geometry remains unchanged between time-steps, very fast execution speeds are obtained since the solution operator for each implicit solve can be pre-computed. |
doi_str_mv | 10.1007/s10543-018-0714-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2149074960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149074960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d9adf3559f9889c201ed1d3e6bb6989be9659ac63fe5bfb2aef4708af7d8b2ae3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FJ0rTNcVn8y4Ie9BzSZCJZus2adAX99LZU8ORpeDPvvYEfIZcMrhlAfZMZyFJQYA2FmpUUjsiCyZpTxbg8JgsAqKhohDwlZzlvAbiqmFiQp1VfGGuxw2QGdMVLDDnHvsix-8RUtCaPy1HvDt0QXNyZMN72aIdkusKFbBMO4dsMIfbn5MSbLuPF71ySt7vb1_UD3TzfP65XG2qFVAN1yjgvpFReNY2yHBg65gRWbVupRrWoKqmMrYRH2fqWG_RlDY3xtWsmJZbkau7dp_hxwDzobTykfnypOSsV1KWqYHSx2WVTzDmh1_sUdiZ9aQZ6QqZnZHpEpidkesrwOZNHb_-O6a_5_9APJ_Jv5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149074960</pqid></control><display><type>article</type><title>An accelerated Poisson solver based on multidomain spectral discretization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Babb, Tracy ; Gillman, Adrianna ; Hao, Sijia ; Martinsson, Per-Gunnar</creator><creatorcontrib>Babb, Tracy ; Gillman, Adrianna ; Hao, Sijia ; Martinsson, Per-Gunnar</creatorcontrib><description>This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domain spectral collocation method of high local order (order 30 and higher have been tested and work well). Local mesh refinement results in highly accurate solutions even in the presence of local irregular behavior due to corner singularities, localized loads, etc. The system of linear equations attained upon discretization is solved using a direct (as opposed to iterative) solver with
O
(
N
1.5
)
complexity for the factorization stage and
O
(
N
log
N
)
complexity for the solve. The scheme is ideally suited for executing the elliptic solve required when parabolic problems are discretized via time-implicit techniques. In situations where the geometry remains unchanged between time-steps, very fast execution speeds are obtained since the solution operator for each implicit solve can be pre-computed.</description><identifier>ISSN: 0006-3835</identifier><identifier>EISSN: 1572-9125</identifier><identifier>DOI: 10.1007/s10543-018-0714-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Collocation methods ; Complexity ; Computational Mathematics and Numerical Analysis ; Discretization ; Domains ; Grid refinement (mathematics) ; Iterative methods ; Linear equations ; Mathematics ; Mathematics and Statistics ; Numeric Computing ; Numerical methods ; Rectangles ; Singularities</subject><ispartof>BIT, 2018-12, Vol.58 (4), p.851-879</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d9adf3559f9889c201ed1d3e6bb6989be9659ac63fe5bfb2aef4708af7d8b2ae3</citedby><cites>FETCH-LOGICAL-c359t-d9adf3559f9889c201ed1d3e6bb6989be9659ac63fe5bfb2aef4708af7d8b2ae3</cites><orcidid>0000-0002-1048-5270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10543-018-0714-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10543-018-0714-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Babb, Tracy</creatorcontrib><creatorcontrib>Gillman, Adrianna</creatorcontrib><creatorcontrib>Hao, Sijia</creatorcontrib><creatorcontrib>Martinsson, Per-Gunnar</creatorcontrib><title>An accelerated Poisson solver based on multidomain spectral discretization</title><title>BIT</title><addtitle>Bit Numer Math</addtitle><description>This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domain spectral collocation method of high local order (order 30 and higher have been tested and work well). Local mesh refinement results in highly accurate solutions even in the presence of local irregular behavior due to corner singularities, localized loads, etc. The system of linear equations attained upon discretization is solved using a direct (as opposed to iterative) solver with
O
(
N
1.5
)
complexity for the factorization stage and
O
(
N
log
N
)
complexity for the solve. The scheme is ideally suited for executing the elliptic solve required when parabolic problems are discretized via time-implicit techniques. In situations where the geometry remains unchanged between time-steps, very fast execution speeds are obtained since the solution operator for each implicit solve can be pre-computed.</description><subject>Collocation methods</subject><subject>Complexity</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discretization</subject><subject>Domains</subject><subject>Grid refinement (mathematics)</subject><subject>Iterative methods</subject><subject>Linear equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numeric Computing</subject><subject>Numerical methods</subject><subject>Rectangles</subject><subject>Singularities</subject><issn>0006-3835</issn><issn>1572-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9FJ0rTNcVn8y4Ie9BzSZCJZus2adAX99LZU8ORpeDPvvYEfIZcMrhlAfZMZyFJQYA2FmpUUjsiCyZpTxbg8JgsAqKhohDwlZzlvAbiqmFiQp1VfGGuxw2QGdMVLDDnHvsix-8RUtCaPy1HvDt0QXNyZMN72aIdkusKFbBMO4dsMIfbn5MSbLuPF71ySt7vb1_UD3TzfP65XG2qFVAN1yjgvpFReNY2yHBg65gRWbVupRrWoKqmMrYRH2fqWG_RlDY3xtWsmJZbkau7dp_hxwDzobTykfnypOSsV1KWqYHSx2WVTzDmh1_sUdiZ9aQZ6QqZnZHpEpidkesrwOZNHb_-O6a_5_9APJ_Jv5w</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Babb, Tracy</creator><creator>Gillman, Adrianna</creator><creator>Hao, Sijia</creator><creator>Martinsson, Per-Gunnar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1048-5270</orcidid></search><sort><creationdate>20181201</creationdate><title>An accelerated Poisson solver based on multidomain spectral discretization</title><author>Babb, Tracy ; Gillman, Adrianna ; Hao, Sijia ; Martinsson, Per-Gunnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d9adf3559f9889c201ed1d3e6bb6989be9659ac63fe5bfb2aef4708af7d8b2ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Collocation methods</topic><topic>Complexity</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discretization</topic><topic>Domains</topic><topic>Grid refinement (mathematics)</topic><topic>Iterative methods</topic><topic>Linear equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numeric Computing</topic><topic>Numerical methods</topic><topic>Rectangles</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babb, Tracy</creatorcontrib><creatorcontrib>Gillman, Adrianna</creatorcontrib><creatorcontrib>Hao, Sijia</creatorcontrib><creatorcontrib>Martinsson, Per-Gunnar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>BIT</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babb, Tracy</au><au>Gillman, Adrianna</au><au>Hao, Sijia</au><au>Martinsson, Per-Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accelerated Poisson solver based on multidomain spectral discretization</atitle><jtitle>BIT</jtitle><stitle>Bit Numer Math</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>58</volume><issue>4</issue><spage>851</spage><epage>879</epage><pages>851-879</pages><issn>0006-3835</issn><eissn>1572-9125</eissn><abstract>This paper presents a numerical method for variable coefficient elliptic PDEs with mostly smooth solutions on two dimensional domains. The method works best for domains that can readily be mapped onto a rectangle, or a collection of nonoverlapping rectangles. The PDE is discretized via a multi-domain spectral collocation method of high local order (order 30 and higher have been tested and work well). Local mesh refinement results in highly accurate solutions even in the presence of local irregular behavior due to corner singularities, localized loads, etc. The system of linear equations attained upon discretization is solved using a direct (as opposed to iterative) solver with
O
(
N
1.5
)
complexity for the factorization stage and
O
(
N
log
N
)
complexity for the solve. The scheme is ideally suited for executing the elliptic solve required when parabolic problems are discretized via time-implicit techniques. In situations where the geometry remains unchanged between time-steps, very fast execution speeds are obtained since the solution operator for each implicit solve can be pre-computed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10543-018-0714-0</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1048-5270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3835 |
ispartof | BIT, 2018-12, Vol.58 (4), p.851-879 |
issn | 0006-3835 1572-9125 |
language | eng |
recordid | cdi_proquest_journals_2149074960 |
source | SpringerLink Journals - AutoHoldings |
subjects | Collocation methods Complexity Computational Mathematics and Numerical Analysis Discretization Domains Grid refinement (mathematics) Iterative methods Linear equations Mathematics Mathematics and Statistics Numeric Computing Numerical methods Rectangles Singularities |
title | An accelerated Poisson solver based on multidomain spectral discretization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accelerated%20Poisson%20solver%20based%20on%20multidomain%20spectral%20discretization&rft.jtitle=BIT&rft.au=Babb,%20Tracy&rft.date=2018-12-01&rft.volume=58&rft.issue=4&rft.spage=851&rft.epage=879&rft.pages=851-879&rft.issn=0006-3835&rft.eissn=1572-9125&rft_id=info:doi/10.1007/s10543-018-0714-0&rft_dat=%3Cproquest_cross%3E2149074960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149074960&rft_id=info:pmid/&rfr_iscdi=true |