Gradient estimates for double phase problems with irregular obstacles

An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2018-12, Vol.177, p.169-185
Hauptverfasser: Byun, Sun-Sig, Cho, Yumi, Oh, Jehan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue
container_start_page 169
container_title Nonlinear analysis
container_volume 177
creator Byun, Sun-Sig
Cho, Yumi
Oh, Jehan
description An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstacle function and the associated nonhomogeneous term in the divergence. Calderón–Zygmund type estimates are also obtained under minimal regularity requirements of the prescribed data.
doi_str_mv 10.1016/j.na.2018.02.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2148959995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X18300488</els_id><sourcerecordid>2148959995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-c91190452b0dac369b024cba33a2564c08a9e0357cb1a6ace623940f9b8d41f03</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwued518duNNSq1CwYuCt5BkszbLdlOTXcX_vin16mWGgfdm3vwQusVQYcDivqsGXRHAdQWkAqjP0AzXC1pygvk5mgEVpORMfFyiq5Q6AMALKmZotY668W4YC5dGv9OjS0UbYtGEyfSu2G91yjWGPOxS8ePHbeFjdJ9Tr2MRTBq17V26Rhet7pO7-etz9P60els-l5vX9cvycVNaSshYWomxBMaJgUZbKqQBwqzRlGrCBbNQa-mA8oU1WAttnSBUMmilqRuGW6BzdHfamxN9TTmx6sIUh3xSEcxqyaWUPKvgpLIxpBRdq_YxvxZ_FQZ1hKU6NWh1hKWAqAwrWx5OFpfTf3sXVbKZinWNj86Oqgn-f_MBQ1dw4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2148959995</pqid></control><display><type>article</type><title>Gradient estimates for double phase problems with irregular obstacles</title><source>Elsevier ScienceDirect Journals</source><creator>Byun, Sun-Sig ; Cho, Yumi ; Oh, Jehan</creator><creatorcontrib>Byun, Sun-Sig ; Cho, Yumi ; Oh, Jehan</creatorcontrib><description>An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstacle function and the associated nonhomogeneous term in the divergence. Calderón–Zygmund type estimates are also obtained under minimal regularity requirements of the prescribed data.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2018.02.008</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Calderón–Zygmund estimate ; Divergence ; Double phase problem ; Mathematical problems ; Nonlinear systems ; Obstacle problem ; Partial differential equations ; Regularity</subject><ispartof>Nonlinear analysis, 2018-12, Vol.177, p.169-185</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-c91190452b0dac369b024cba33a2564c08a9e0357cb1a6ace623940f9b8d41f03</citedby><cites>FETCH-LOGICAL-c322t-c91190452b0dac369b024cba33a2564c08a9e0357cb1a6ace623940f9b8d41f03</cites><orcidid>0000-0001-9602-5111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2018.02.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Byun, Sun-Sig</creatorcontrib><creatorcontrib>Cho, Yumi</creatorcontrib><creatorcontrib>Oh, Jehan</creatorcontrib><title>Gradient estimates for double phase problems with irregular obstacles</title><title>Nonlinear analysis</title><description>An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstacle function and the associated nonhomogeneous term in the divergence. Calderón–Zygmund type estimates are also obtained under minimal regularity requirements of the prescribed data.</description><subject>Calderón–Zygmund estimate</subject><subject>Divergence</subject><subject>Double phase problem</subject><subject>Mathematical problems</subject><subject>Nonlinear systems</subject><subject>Obstacle problem</subject><subject>Partial differential equations</subject><subject>Regularity</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwued518duNNSq1CwYuCt5BkszbLdlOTXcX_vin16mWGgfdm3vwQusVQYcDivqsGXRHAdQWkAqjP0AzXC1pygvk5mgEVpORMfFyiq5Q6AMALKmZotY668W4YC5dGv9OjS0UbYtGEyfSu2G91yjWGPOxS8ePHbeFjdJ9Tr2MRTBq17V26Rhet7pO7-etz9P60els-l5vX9cvycVNaSshYWomxBMaJgUZbKqQBwqzRlGrCBbNQa-mA8oU1WAttnSBUMmilqRuGW6BzdHfamxN9TTmx6sIUh3xSEcxqyaWUPKvgpLIxpBRdq_YxvxZ_FQZ1hKU6NWh1hKWAqAwrWx5OFpfTf3sXVbKZinWNj86Oqgn-f_MBQ1dw4A</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Byun, Sun-Sig</creator><creator>Cho, Yumi</creator><creator>Oh, Jehan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9602-5111</orcidid></search><sort><creationdate>201812</creationdate><title>Gradient estimates for double phase problems with irregular obstacles</title><author>Byun, Sun-Sig ; Cho, Yumi ; Oh, Jehan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-c91190452b0dac369b024cba33a2564c08a9e0357cb1a6ace623940f9b8d41f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calderón–Zygmund estimate</topic><topic>Divergence</topic><topic>Double phase problem</topic><topic>Mathematical problems</topic><topic>Nonlinear systems</topic><topic>Obstacle problem</topic><topic>Partial differential equations</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byun, Sun-Sig</creatorcontrib><creatorcontrib>Cho, Yumi</creatorcontrib><creatorcontrib>Oh, Jehan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byun, Sun-Sig</au><au>Cho, Yumi</au><au>Oh, Jehan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient estimates for double phase problems with irregular obstacles</atitle><jtitle>Nonlinear analysis</jtitle><date>2018-12</date><risdate>2018</risdate><volume>177</volume><spage>169</spage><epage>185</epage><pages>169-185</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstacle function and the associated nonhomogeneous term in the divergence. Calderón–Zygmund type estimates are also obtained under minimal regularity requirements of the prescribed data.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2018.02.008</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9602-5111</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2018-12, Vol.177, p.169-185
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2148959995
source Elsevier ScienceDirect Journals
subjects Calderón–Zygmund estimate
Divergence
Double phase problem
Mathematical problems
Nonlinear systems
Obstacle problem
Partial differential equations
Regularity
title Gradient estimates for double phase problems with irregular obstacles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20estimates%20for%20double%20phase%20problems%20with%20irregular%20obstacles&rft.jtitle=Nonlinear%20analysis&rft.au=Byun,%20Sun-Sig&rft.date=2018-12&rft.volume=177&rft.spage=169&rft.epage=185&rft.pages=169-185&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2018.02.008&rft_dat=%3Cproquest_cross%3E2148959995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2148959995&rft_id=info:pmid/&rft_els_id=S0362546X18300488&rfr_iscdi=true