Gradient estimates for double phase problems with irregular obstacles
An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstac...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2018-12, Vol.177, p.169-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 169 |
container_title | Nonlinear analysis |
container_volume | 177 |
creator | Byun, Sun-Sig Cho, Yumi Oh, Jehan |
description | An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstacle function and the associated nonhomogeneous term in the divergence. Calderón–Zygmund type estimates are also obtained under minimal regularity requirements of the prescribed data. |
doi_str_mv | 10.1016/j.na.2018.02.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2148959995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X18300488</els_id><sourcerecordid>2148959995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-c91190452b0dac369b024cba33a2564c08a9e0357cb1a6ace623940f9b8d41f03</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwued518duNNSq1CwYuCt5BkszbLdlOTXcX_vin16mWGgfdm3vwQusVQYcDivqsGXRHAdQWkAqjP0AzXC1pygvk5mgEVpORMfFyiq5Q6AMALKmZotY668W4YC5dGv9OjS0UbYtGEyfSu2G91yjWGPOxS8ePHbeFjdJ9Tr2MRTBq17V26Rhet7pO7-etz9P60els-l5vX9cvycVNaSshYWomxBMaJgUZbKqQBwqzRlGrCBbNQa-mA8oU1WAttnSBUMmilqRuGW6BzdHfamxN9TTmx6sIUh3xSEcxqyaWUPKvgpLIxpBRdq_YxvxZ_FQZ1hKU6NWh1hKWAqAwrWx5OFpfTf3sXVbKZinWNj86Oqgn-f_MBQ1dw4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2148959995</pqid></control><display><type>article</type><title>Gradient estimates for double phase problems with irregular obstacles</title><source>Elsevier ScienceDirect Journals</source><creator>Byun, Sun-Sig ; Cho, Yumi ; Oh, Jehan</creator><creatorcontrib>Byun, Sun-Sig ; Cho, Yumi ; Oh, Jehan</creatorcontrib><description>An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstacle function and the associated nonhomogeneous term in the divergence. Calderón–Zygmund type estimates are also obtained under minimal regularity requirements of the prescribed data.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2018.02.008</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Calderón–Zygmund estimate ; Divergence ; Double phase problem ; Mathematical problems ; Nonlinear systems ; Obstacle problem ; Partial differential equations ; Regularity</subject><ispartof>Nonlinear analysis, 2018-12, Vol.177, p.169-185</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-c91190452b0dac369b024cba33a2564c08a9e0357cb1a6ace623940f9b8d41f03</citedby><cites>FETCH-LOGICAL-c322t-c91190452b0dac369b024cba33a2564c08a9e0357cb1a6ace623940f9b8d41f03</cites><orcidid>0000-0001-9602-5111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2018.02.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Byun, Sun-Sig</creatorcontrib><creatorcontrib>Cho, Yumi</creatorcontrib><creatorcontrib>Oh, Jehan</creatorcontrib><title>Gradient estimates for double phase problems with irregular obstacles</title><title>Nonlinear analysis</title><description>An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstacle function and the associated nonhomogeneous term in the divergence. Calderón–Zygmund type estimates are also obtained under minimal regularity requirements of the prescribed data.</description><subject>Calderón–Zygmund estimate</subject><subject>Divergence</subject><subject>Double phase problem</subject><subject>Mathematical problems</subject><subject>Nonlinear systems</subject><subject>Obstacle problem</subject><subject>Partial differential equations</subject><subject>Regularity</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwued518duNNSq1CwYuCt5BkszbLdlOTXcX_vin16mWGgfdm3vwQusVQYcDivqsGXRHAdQWkAqjP0AzXC1pygvk5mgEVpORMfFyiq5Q6AMALKmZotY668W4YC5dGv9OjS0UbYtGEyfSu2G91yjWGPOxS8ePHbeFjdJ9Tr2MRTBq17V26Rhet7pO7-etz9P60els-l5vX9cvycVNaSshYWomxBMaJgUZbKqQBwqzRlGrCBbNQa-mA8oU1WAttnSBUMmilqRuGW6BzdHfamxN9TTmx6sIUh3xSEcxqyaWUPKvgpLIxpBRdq_YxvxZ_FQZ1hKU6NWh1hKWAqAwrWx5OFpfTf3sXVbKZinWNj86Oqgn-f_MBQ1dw4A</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Byun, Sun-Sig</creator><creator>Cho, Yumi</creator><creator>Oh, Jehan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9602-5111</orcidid></search><sort><creationdate>201812</creationdate><title>Gradient estimates for double phase problems with irregular obstacles</title><author>Byun, Sun-Sig ; Cho, Yumi ; Oh, Jehan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-c91190452b0dac369b024cba33a2564c08a9e0357cb1a6ace623940f9b8d41f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calderón–Zygmund estimate</topic><topic>Divergence</topic><topic>Double phase problem</topic><topic>Mathematical problems</topic><topic>Nonlinear systems</topic><topic>Obstacle problem</topic><topic>Partial differential equations</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byun, Sun-Sig</creatorcontrib><creatorcontrib>Cho, Yumi</creatorcontrib><creatorcontrib>Oh, Jehan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byun, Sun-Sig</au><au>Cho, Yumi</au><au>Oh, Jehan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient estimates for double phase problems with irregular obstacles</atitle><jtitle>Nonlinear analysis</jtitle><date>2018-12</date><risdate>2018</risdate><volume>177</volume><spage>169</spage><epage>185</epage><pages>169-185</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>An irregular obstacle problem with non-uniformly elliptic operator in divergence form of (p,q)-growth is studied. We find an optimal regularity for such a double phase obstacle problem by essentially proving that the gradient of a solution is as integrable as both the gradient of the assigned obstacle function and the associated nonhomogeneous term in the divergence. Calderón–Zygmund type estimates are also obtained under minimal regularity requirements of the prescribed data.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2018.02.008</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9602-5111</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2018-12, Vol.177, p.169-185 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_2148959995 |
source | Elsevier ScienceDirect Journals |
subjects | Calderón–Zygmund estimate Divergence Double phase problem Mathematical problems Nonlinear systems Obstacle problem Partial differential equations Regularity |
title | Gradient estimates for double phase problems with irregular obstacles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20estimates%20for%20double%20phase%20problems%20with%20irregular%20obstacles&rft.jtitle=Nonlinear%20analysis&rft.au=Byun,%20Sun-Sig&rft.date=2018-12&rft.volume=177&rft.spage=169&rft.epage=185&rft.pages=169-185&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2018.02.008&rft_dat=%3Cproquest_cross%3E2148959995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2148959995&rft_id=info:pmid/&rft_els_id=S0362546X18300488&rfr_iscdi=true |