Integrating cloud-based workflows in continental-scale cropland extent classification

Accurate information on cropland spatial distribution is required for global-scale assessments and agricultural land use policies. Cloud computing platforms such as Google Earth Engine (GEE) provide unprecedented opportunities for large-scale classifications of Landsat data. We developed a novel met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2018-12, Vol.219, p.162-179
Hauptverfasser: Massey, Richard, Sankey, Temuulen T., Yadav, Kamini, Congalton, Russell G., Tilton, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue
container_start_page 162
container_title Remote sensing of environment
container_volume 219
creator Massey, Richard
Sankey, Temuulen T.
Yadav, Kamini
Congalton, Russell G.
Tilton, James C.
description Accurate information on cropland spatial distribution is required for global-scale assessments and agricultural land use policies. Cloud computing platforms such as Google Earth Engine (GEE) provide unprecedented opportunities for large-scale classifications of Landsat data. We developed a novel method to fuse pixel-based random forest classification of continental-scale Landsat data on GEE and an object-based segmentation approach known as recursive hierarchical segmentation (RHSeg). Using our fusion method, we produced a continental-scale cropland extent map for North America at 30 m spatial resolution for the nominal year 2010. The total cropland area for North America was estimated at 275.18 million hectares (Mha). The overall accuracies of the map are >90% across the continent. This map also compares well with the United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-food Canada (AAFC) annual crop inventory (ACI), and the Mexican government agency Servicio de Información Agroalimentaria y Pesquera (SIAP)'s agricultural boundaries. Furthermore, our map compared well with sub-country statistics including state-wise and county-wise cropland statistics in regression models resulting in R2 > 0.84. This key contribution paves the way for more detailed products such as crop intensity, crop type, and crop irrigation, and provides a method for creating high-resolution cropland extent maps for other countries where spatial information about croplands are not as prevalent. •Novel method to combine pixel-based and object-based Landsat classifications•Continental scale cropland extent for North America at 30 m for nominal 2010•Efficient workflow of Google Earth engine and computing cluster combination
doi_str_mv 10.1016/j.rse.2018.10.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2148955668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425718304619</els_id><sourcerecordid>2148955668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-2222bee273aa788f5c32732e7d3f368c4edbd116cf1c21f020eeb4d0fbf3431e3</originalsourceid><addsrcrecordid>eNp9UE1PxCAUJEYT19UfYOKhiedWKPQrnszGj0028eKeCYXHhlphBdbVfy9NPfsu8ObNzINB6JrggmBS3w2FD1CUmLSpLzChJ2hB2qbLcYPZKVpgTFnOyqo5RxchDBiTqm3IAm3XNsLOi2jsLpOjO6i8FwFUdnT-XY_uGDJjM-lsIoCNYsyDFCNk0rv9KKzK4DsmPElFCEYbmZycvURnWowBrv7OJdo-Pb6tXvLN6_N69bDJJaNNzMtUPUDZUCGattWVpOleQqOopnUrGaheEVJLTWRJNC4xQM8U1r2mjBKgS3Q7--69-zxAiHxwB2_TSl4S1nZVVddtYpGZlR4dggfN9958CP_DCeZTenzgKT0-pTdBKb2kuZk1VgTBbfRhGnc4Fesmy_t5DOl3XwY8D9KAlaCMBxm5cuYf819WsoG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2148955668</pqid></control><display><type>article</type><title>Integrating cloud-based workflows in continental-scale cropland extent classification</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>NASA Technical Reports Server</source><creator>Massey, Richard ; Sankey, Temuulen T. ; Yadav, Kamini ; Congalton, Russell G. ; Tilton, James C.</creator><creatorcontrib>Massey, Richard ; Sankey, Temuulen T. ; Yadav, Kamini ; Congalton, Russell G. ; Tilton, James C.</creatorcontrib><description>Accurate information on cropland spatial distribution is required for global-scale assessments and agricultural land use policies. Cloud computing platforms such as Google Earth Engine (GEE) provide unprecedented opportunities for large-scale classifications of Landsat data. We developed a novel method to fuse pixel-based random forest classification of continental-scale Landsat data on GEE and an object-based segmentation approach known as recursive hierarchical segmentation (RHSeg). Using our fusion method, we produced a continental-scale cropland extent map for North America at 30 m spatial resolution for the nominal year 2010. The total cropland area for North America was estimated at 275.18 million hectares (Mha). The overall accuracies of the map are &gt;90% across the continent. This map also compares well with the United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-food Canada (AAFC) annual crop inventory (ACI), and the Mexican government agency Servicio de Información Agroalimentaria y Pesquera (SIAP)'s agricultural boundaries. Furthermore, our map compared well with sub-country statistics including state-wise and county-wise cropland statistics in regression models resulting in R2 &gt; 0.84. This key contribution paves the way for more detailed products such as crop intensity, crop type, and crop irrigation, and provides a method for creating high-resolution cropland extent maps for other countries where spatial information about croplands are not as prevalent. •Novel method to combine pixel-based and object-based Landsat classifications•Continental scale cropland extent for North America at 30 m for nominal 2010•Efficient workflow of Google Earth engine and computing cluster combination</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2018.10.013</identifier><language>eng</language><publisher>Goddard Space Flight Center: Elsevier Inc</publisher><subject>Agribusiness ; Agricultural land ; Agricultural policy ; Agricultural production ; Agriculture ; Classification ; Cloud computing ; Cluster computing ; Crops ; Earth Resources And Remote Sensing ; Google Earth Engine ; Government agencies ; Irrigation ; Land use ; Landsat ; Landsat satellites ; North American croplands ; Object-based analysis ; Random Forest ; Recursive methods ; Regression analysis ; Regression models ; Remote sensing ; RHSeg ; Segmentation ; Spatial data ; Spatial distribution ; Spatial resolution ; Statistical analysis ; Statistics</subject><ispartof>Remote sensing of environment, 2018-12, Vol.219, p.162-179</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV Dec 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-2222bee273aa788f5c32732e7d3f368c4edbd116cf1c21f020eeb4d0fbf3431e3</citedby><cites>FETCH-LOGICAL-c437t-2222bee273aa788f5c32732e7d3f368c4edbd116cf1c21f020eeb4d0fbf3431e3</cites><orcidid>0000-0002-4831-8718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2018.10.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Massey, Richard</creatorcontrib><creatorcontrib>Sankey, Temuulen T.</creatorcontrib><creatorcontrib>Yadav, Kamini</creatorcontrib><creatorcontrib>Congalton, Russell G.</creatorcontrib><creatorcontrib>Tilton, James C.</creatorcontrib><title>Integrating cloud-based workflows in continental-scale cropland extent classification</title><title>Remote sensing of environment</title><description>Accurate information on cropland spatial distribution is required for global-scale assessments and agricultural land use policies. Cloud computing platforms such as Google Earth Engine (GEE) provide unprecedented opportunities for large-scale classifications of Landsat data. We developed a novel method to fuse pixel-based random forest classification of continental-scale Landsat data on GEE and an object-based segmentation approach known as recursive hierarchical segmentation (RHSeg). Using our fusion method, we produced a continental-scale cropland extent map for North America at 30 m spatial resolution for the nominal year 2010. The total cropland area for North America was estimated at 275.18 million hectares (Mha). The overall accuracies of the map are &gt;90% across the continent. This map also compares well with the United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-food Canada (AAFC) annual crop inventory (ACI), and the Mexican government agency Servicio de Información Agroalimentaria y Pesquera (SIAP)'s agricultural boundaries. Furthermore, our map compared well with sub-country statistics including state-wise and county-wise cropland statistics in regression models resulting in R2 &gt; 0.84. This key contribution paves the way for more detailed products such as crop intensity, crop type, and crop irrigation, and provides a method for creating high-resolution cropland extent maps for other countries where spatial information about croplands are not as prevalent. •Novel method to combine pixel-based and object-based Landsat classifications•Continental scale cropland extent for North America at 30 m for nominal 2010•Efficient workflow of Google Earth engine and computing cluster combination</description><subject>Agribusiness</subject><subject>Agricultural land</subject><subject>Agricultural policy</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Cluster computing</subject><subject>Crops</subject><subject>Earth Resources And Remote Sensing</subject><subject>Google Earth Engine</subject><subject>Government agencies</subject><subject>Irrigation</subject><subject>Land use</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>North American croplands</subject><subject>Object-based analysis</subject><subject>Random Forest</subject><subject>Recursive methods</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>RHSeg</subject><subject>Segmentation</subject><subject>Spatial data</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9UE1PxCAUJEYT19UfYOKhiedWKPQrnszGj0028eKeCYXHhlphBdbVfy9NPfsu8ObNzINB6JrggmBS3w2FD1CUmLSpLzChJ2hB2qbLcYPZKVpgTFnOyqo5RxchDBiTqm3IAm3XNsLOi2jsLpOjO6i8FwFUdnT-XY_uGDJjM-lsIoCNYsyDFCNk0rv9KKzK4DsmPElFCEYbmZycvURnWowBrv7OJdo-Pb6tXvLN6_N69bDJJaNNzMtUPUDZUCGattWVpOleQqOopnUrGaheEVJLTWRJNC4xQM8U1r2mjBKgS3Q7--69-zxAiHxwB2_TSl4S1nZVVddtYpGZlR4dggfN9958CP_DCeZTenzgKT0-pTdBKb2kuZk1VgTBbfRhGnc4Fesmy_t5DOl3XwY8D9KAlaCMBxm5cuYf819WsoG4</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>Massey, Richard</creator><creator>Sankey, Temuulen T.</creator><creator>Yadav, Kamini</creator><creator>Congalton, Russell G.</creator><creator>Tilton, James C.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4831-8718</orcidid></search><sort><creationdate>20181215</creationdate><title>Integrating cloud-based workflows in continental-scale cropland extent classification</title><author>Massey, Richard ; Sankey, Temuulen T. ; Yadav, Kamini ; Congalton, Russell G. ; Tilton, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-2222bee273aa788f5c32732e7d3f368c4edbd116cf1c21f020eeb4d0fbf3431e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agribusiness</topic><topic>Agricultural land</topic><topic>Agricultural policy</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Cluster computing</topic><topic>Crops</topic><topic>Earth Resources And Remote Sensing</topic><topic>Google Earth Engine</topic><topic>Government agencies</topic><topic>Irrigation</topic><topic>Land use</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>North American croplands</topic><topic>Object-based analysis</topic><topic>Random Forest</topic><topic>Recursive methods</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>RHSeg</topic><topic>Segmentation</topic><topic>Spatial data</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massey, Richard</creatorcontrib><creatorcontrib>Sankey, Temuulen T.</creatorcontrib><creatorcontrib>Yadav, Kamini</creatorcontrib><creatorcontrib>Congalton, Russell G.</creatorcontrib><creatorcontrib>Tilton, James C.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massey, Richard</au><au>Sankey, Temuulen T.</au><au>Yadav, Kamini</au><au>Congalton, Russell G.</au><au>Tilton, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating cloud-based workflows in continental-scale cropland extent classification</atitle><jtitle>Remote sensing of environment</jtitle><date>2018-12-15</date><risdate>2018</risdate><volume>219</volume><spage>162</spage><epage>179</epage><pages>162-179</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Accurate information on cropland spatial distribution is required for global-scale assessments and agricultural land use policies. Cloud computing platforms such as Google Earth Engine (GEE) provide unprecedented opportunities for large-scale classifications of Landsat data. We developed a novel method to fuse pixel-based random forest classification of continental-scale Landsat data on GEE and an object-based segmentation approach known as recursive hierarchical segmentation (RHSeg). Using our fusion method, we produced a continental-scale cropland extent map for North America at 30 m spatial resolution for the nominal year 2010. The total cropland area for North America was estimated at 275.18 million hectares (Mha). The overall accuracies of the map are &gt;90% across the continent. This map also compares well with the United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-food Canada (AAFC) annual crop inventory (ACI), and the Mexican government agency Servicio de Información Agroalimentaria y Pesquera (SIAP)'s agricultural boundaries. Furthermore, our map compared well with sub-country statistics including state-wise and county-wise cropland statistics in regression models resulting in R2 &gt; 0.84. This key contribution paves the way for more detailed products such as crop intensity, crop type, and crop irrigation, and provides a method for creating high-resolution cropland extent maps for other countries where spatial information about croplands are not as prevalent. •Novel method to combine pixel-based and object-based Landsat classifications•Continental scale cropland extent for North America at 30 m for nominal 2010•Efficient workflow of Google Earth engine and computing cluster combination</abstract><cop>Goddard Space Flight Center</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2018.10.013</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4831-8718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2018-12, Vol.219, p.162-179
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_journals_2148955668
source Elsevier ScienceDirect Journals Complete - AutoHoldings; NASA Technical Reports Server
subjects Agribusiness
Agricultural land
Agricultural policy
Agricultural production
Agriculture
Classification
Cloud computing
Cluster computing
Crops
Earth Resources And Remote Sensing
Google Earth Engine
Government agencies
Irrigation
Land use
Landsat
Landsat satellites
North American croplands
Object-based analysis
Random Forest
Recursive methods
Regression analysis
Regression models
Remote sensing
RHSeg
Segmentation
Spatial data
Spatial distribution
Spatial resolution
Statistical analysis
Statistics
title Integrating cloud-based workflows in continental-scale cropland extent classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20cloud-based%20workflows%20in%20continental-scale%20cropland%20extent%20classification&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Massey,%20Richard&rft.date=2018-12-15&rft.volume=219&rft.spage=162&rft.epage=179&rft.pages=162-179&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2018.10.013&rft_dat=%3Cproquest_cross%3E2148955668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2148955668&rft_id=info:pmid/&rft_els_id=S0034425718304619&rfr_iscdi=true