The Capacity Method of Quadratic Programming
A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. De...
Gespeichert in:
Veröffentlicht in: | Econometrica 1960-01, Vol.28 (1), p.62-87 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | Econometrica |
container_volume | 28 |
creator | Houthakker, H. S. |
description | A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. Detailed computing directions are given in the Appendix. |
doi_str_mv | 10.2307/1905294 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_214673512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1905294</jstor_id><sourcerecordid>1905294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-14678ca442767dba16afbf67dc64b98bb799e1bcca0cc65ce190de311908bffc3</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMoWKf4F4oK3lhN0iRtLqXMD5ioMK9DkiZbi11qkl7s35ux3Q5eOO_FwzmHA8A1go-4hNUT4pBiTk5AhgirC4gZPgUZhAgXnNX4HFyE0EMIaboMPCzXJm_kKHUXt_mHiWvX5s7m35NsvYydzr-8W3k5DN1mdQnOrPwN5uqgM_DzMl82b8Xi8_W9eV4UuixJLFJuVWtJCK5Y1SqJmLTKplczonitVMW5QUprCbVmVJtUuTUlSlIra3U5Azd739G7v8mEKHo3-U2KFHhnXlKEE3R7DEKYM0IJrWii7veU9i4Eb6wYfTdIvxUIit1e4rBXIu_2ZB-i80exfzLRZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214673512</pqid></control><display><type>article</type><title>The Capacity Method of Quadratic Programming</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><creator>Houthakker, H. S.</creator><creatorcontrib>Houthakker, H. S.</creatorcontrib><description>A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. Detailed computing directions are given in the Appendix.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.2307/1905294</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Menasha, Wis: The Econometric Society</publisher><subject>Coefficients ; Commodities ; Critical points ; Expenditures ; Linear programming ; Marginal utility ; Matrices ; Objective functions ; Prices ; Profits ; Quadratic programming ; Utility functions ; Variable coefficients ; Zero</subject><ispartof>Econometrica, 1960-01, Vol.28 (1), p.62-87</ispartof><rights>Copyright 1960 The Econometric Society</rights><rights>Copyright Econometric Society Jan 1960</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-14678ca442767dba16afbf67dc64b98bb799e1bcca0cc65ce190de311908bffc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1905294$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1905294$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Houthakker, H. S.</creatorcontrib><title>The Capacity Method of Quadratic Programming</title><title>Econometrica</title><description>A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. Detailed computing directions are given in the Appendix.</description><subject>Coefficients</subject><subject>Commodities</subject><subject>Critical points</subject><subject>Expenditures</subject><subject>Linear programming</subject><subject>Marginal utility</subject><subject>Matrices</subject><subject>Objective functions</subject><subject>Prices</subject><subject>Profits</subject><subject>Quadratic programming</subject><subject>Utility functions</subject><subject>Variable coefficients</subject><subject>Zero</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1960</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kF1LwzAYhYMoWKf4F4oK3lhN0iRtLqXMD5ioMK9DkiZbi11qkl7s35ux3Q5eOO_FwzmHA8A1go-4hNUT4pBiTk5AhgirC4gZPgUZhAgXnNX4HFyE0EMIaboMPCzXJm_kKHUXt_mHiWvX5s7m35NsvYydzr-8W3k5DN1mdQnOrPwN5uqgM_DzMl82b8Xi8_W9eV4UuixJLFJuVWtJCK5Y1SqJmLTKplczonitVMW5QUprCbVmVJtUuTUlSlIra3U5Azd739G7v8mEKHo3-U2KFHhnXlKEE3R7DEKYM0IJrWii7veU9i4Eb6wYfTdIvxUIit1e4rBXIu_2ZB-i80exfzLRZXw</recordid><startdate>19600101</startdate><enddate>19600101</enddate><creator>Houthakker, H. S.</creator><general>The Econometric Society</general><general>George Banta Pub. Co. for the Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0A</scope><scope>M0C</scope><scope>M0T</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19600101</creationdate><title>The Capacity Method of Quadratic Programming</title><author>Houthakker, H. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-14678ca442767dba16afbf67dc64b98bb799e1bcca0cc65ce190de311908bffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1960</creationdate><topic>Coefficients</topic><topic>Commodities</topic><topic>Critical points</topic><topic>Expenditures</topic><topic>Linear programming</topic><topic>Marginal utility</topic><topic>Matrices</topic><topic>Objective functions</topic><topic>Prices</topic><topic>Profits</topic><topic>Quadratic programming</topic><topic>Utility functions</topic><topic>Variable coefficients</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houthakker, H. S.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Archive</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houthakker, H. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Capacity Method of Quadratic Programming</atitle><jtitle>Econometrica</jtitle><date>1960-01-01</date><risdate>1960</risdate><volume>28</volume><issue>1</issue><spage>62</spage><epage>87</epage><pages>62-87</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. Detailed computing directions are given in the Appendix.</abstract><cop>Menasha, Wis</cop><pub>The Econometric Society</pub><doi>10.2307/1905294</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 1960-01, Vol.28 (1), p.62-87 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_journals_214673512 |
source | Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics |
subjects | Coefficients Commodities Critical points Expenditures Linear programming Marginal utility Matrices Objective functions Prices Profits Quadratic programming Utility functions Variable coefficients Zero |
title | The Capacity Method of Quadratic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Capacity%20Method%20of%20Quadratic%20Programming&rft.jtitle=Econometrica&rft.au=Houthakker,%20H.%20S.&rft.date=1960-01-01&rft.volume=28&rft.issue=1&rft.spage=62&rft.epage=87&rft.pages=62-87&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.2307/1905294&rft_dat=%3Cjstor_proqu%3E1905294%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214673512&rft_id=info:pmid/&rft_jstor_id=1905294&rfr_iscdi=true |