The Capacity Method of Quadratic Programming

A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 1960-01, Vol.28 (1), p.62-87
1. Verfasser: Houthakker, H. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1
container_start_page 62
container_title Econometrica
container_volume 28
creator Houthakker, H. S.
description A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. Detailed computing directions are given in the Appendix.
doi_str_mv 10.2307/1905294
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_214673512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1905294</jstor_id><sourcerecordid>1905294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-14678ca442767dba16afbf67dc64b98bb799e1bcca0cc65ce190de311908bffc3</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYMoWKf4F4oK3lhN0iRtLqXMD5ioMK9DkiZbi11qkl7s35ux3Q5eOO_FwzmHA8A1go-4hNUT4pBiTk5AhgirC4gZPgUZhAgXnNX4HFyE0EMIaboMPCzXJm_kKHUXt_mHiWvX5s7m35NsvYydzr-8W3k5DN1mdQnOrPwN5uqgM_DzMl82b8Xi8_W9eV4UuixJLFJuVWtJCK5Y1SqJmLTKplczonitVMW5QUprCbVmVJtUuTUlSlIra3U5Azd739G7v8mEKHo3-U2KFHhnXlKEE3R7DEKYM0IJrWii7veU9i4Eb6wYfTdIvxUIit1e4rBXIu_2ZB-i80exfzLRZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214673512</pqid></control><display><type>article</type><title>The Capacity Method of Quadratic Programming</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Houthakker, H. S.</creator><creatorcontrib>Houthakker, H. S.</creatorcontrib><description>A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. Detailed computing directions are given in the Appendix.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.2307/1905294</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Menasha, Wis: The Econometric Society</publisher><subject>Coefficients ; Commodities ; Critical points ; Expenditures ; Linear programming ; Marginal utility ; Matrices ; Objective functions ; Prices ; Profits ; Quadratic programming ; Utility functions ; Variable coefficients ; Zero</subject><ispartof>Econometrica, 1960-01, Vol.28 (1), p.62-87</ispartof><rights>Copyright 1960 The Econometric Society</rights><rights>Copyright Econometric Society Jan 1960</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-14678ca442767dba16afbf67dc64b98bb799e1bcca0cc65ce190de311908bffc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1905294$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1905294$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Houthakker, H. S.</creatorcontrib><title>The Capacity Method of Quadratic Programming</title><title>Econometrica</title><description>A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. Detailed computing directions are given in the Appendix.</description><subject>Coefficients</subject><subject>Commodities</subject><subject>Critical points</subject><subject>Expenditures</subject><subject>Linear programming</subject><subject>Marginal utility</subject><subject>Matrices</subject><subject>Objective functions</subject><subject>Prices</subject><subject>Profits</subject><subject>Quadratic programming</subject><subject>Utility functions</subject><subject>Variable coefficients</subject><subject>Zero</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1960</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kF1LwzAYhYMoWKf4F4oK3lhN0iRtLqXMD5ioMK9DkiZbi11qkl7s35ux3Q5eOO_FwzmHA8A1go-4hNUT4pBiTk5AhgirC4gZPgUZhAgXnNX4HFyE0EMIaboMPCzXJm_kKHUXt_mHiWvX5s7m35NsvYydzr-8W3k5DN1mdQnOrPwN5uqgM_DzMl82b8Xi8_W9eV4UuixJLFJuVWtJCK5Y1SqJmLTKplczonitVMW5QUprCbVmVJtUuTUlSlIra3U5Azd739G7v8mEKHo3-U2KFHhnXlKEE3R7DEKYM0IJrWii7veU9i4Eb6wYfTdIvxUIit1e4rBXIu_2ZB-i80exfzLRZXw</recordid><startdate>19600101</startdate><enddate>19600101</enddate><creator>Houthakker, H. S.</creator><general>The Econometric Society</general><general>George Banta Pub. Co. for the Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0A</scope><scope>M0C</scope><scope>M0T</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19600101</creationdate><title>The Capacity Method of Quadratic Programming</title><author>Houthakker, H. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-14678ca442767dba16afbf67dc64b98bb799e1bcca0cc65ce190de311908bffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1960</creationdate><topic>Coefficients</topic><topic>Commodities</topic><topic>Critical points</topic><topic>Expenditures</topic><topic>Linear programming</topic><topic>Marginal utility</topic><topic>Matrices</topic><topic>Objective functions</topic><topic>Prices</topic><topic>Profits</topic><topic>Quadratic programming</topic><topic>Utility functions</topic><topic>Variable coefficients</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houthakker, H. S.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Archive</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houthakker, H. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Capacity Method of Quadratic Programming</atitle><jtitle>Econometrica</jtitle><date>1960-01-01</date><risdate>1960</risdate><volume>28</volume><issue>1</issue><spage>62</spage><epage>87</epage><pages>62-87</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>A method is presented for assigning nonnegative values to several variables so as to maximize a given quadratic objective function while satisfying given linear constraints with nonnegative coefficients. The method is parametoic and iterative; it leads to the solution is a finite number of steps. Detailed computing directions are given in the Appendix.</abstract><cop>Menasha, Wis</cop><pub>The Econometric Society</pub><doi>10.2307/1905294</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 1960-01, Vol.28 (1), p.62-87
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_journals_214673512
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Coefficients
Commodities
Critical points
Expenditures
Linear programming
Marginal utility
Matrices
Objective functions
Prices
Profits
Quadratic programming
Utility functions
Variable coefficients
Zero
title The Capacity Method of Quadratic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Capacity%20Method%20of%20Quadratic%20Programming&rft.jtitle=Econometrica&rft.au=Houthakker,%20H.%20S.&rft.date=1960-01-01&rft.volume=28&rft.issue=1&rft.spage=62&rft.epage=87&rft.pages=62-87&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.2307/1905294&rft_dat=%3Cjstor_proqu%3E1905294%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214673512&rft_id=info:pmid/&rft_jstor_id=1905294&rfr_iscdi=true