Another Generalisation of the Logistic Growth Function

THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 1969-01, Vol.37 (1), p.144-147
1. Verfasser: Oliver, F. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 144
container_title Econometrica
container_volume 37
creator Oliver, F. R.
description THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter function with k = 1, or at any rate known, and arises as the solution of the differential equation...which brings out its use in dealing, for example, with the spread of an innovation.
doi_str_mv 10.2307/1909213
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_214661605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1909213</jstor_id><sourcerecordid>1909213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-267e77ccfff7d43b7f1d413086e7545724e725bd4dd8dd137e3b700fc4defa7a3</originalsourceid><addsrcrecordid>eNp10F9LwzAQAPAgCtYpfoWigk_VyzVN2scxXBUKvuhz6fLHtcxmJinitzejex0cHNz9uOOOkFsKT5iDeKYVVEjzM5JQxssMkOM5SQAoZhUv8ZJceT8AQBEjIXw52rDVLq31qF23630Xejum1qSxnDb2q_ehl2nt7G_YputplIf-Nbkw3c7rm2NekM_1y8fqNWve67fVsskkCggZcqGFkNIYIxTLN8JQxWgOJdeiYIVApgUWG8WUKpWiudDRABjJlDad6PIFuZvn7p39mbQP7WAnN8aVLcbzOOVQRHR_ClGsOMMCqiqqx1lJZ7132rR713937q-l0B4-1x4_F-XDLAcfrDvJ_gFJZGk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214661605</pqid></control><display><type>article</type><title>Another Generalisation of the Logistic Growth Function</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Oliver, F. R.</creator><creatorcontrib>Oliver, F. R.</creatorcontrib><description>THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter function with k = 1, or at any rate known, and arises as the solution of the differential equation...which brings out its use in dealing, for example, with the spread of an innovation.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.2307/1909213</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Menasha, Wis: The Econometric Society</publisher><subject>Asymptotes ; Consumption function ; Differential equations ; Estimates ; Logistic growth ; Logistics ; Marginal propensity to consume ; Mathematical independent variables ; Maximum likelihood estimation ; Maximum likelihood estimators ; Notes and Comments ; Propensity to consume ; Standard error</subject><ispartof>Econometrica, 1969-01, Vol.37 (1), p.144-147</ispartof><rights>Copyright 1969 The Econometric Society</rights><rights>Copyright Econometric Society 1969</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-267e77ccfff7d43b7f1d413086e7545724e725bd4dd8dd137e3b700fc4defa7a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1909213$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1909213$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,27856,27911,27912,58004,58008,58237,58241</link.rule.ids></links><search><creatorcontrib>Oliver, F. R.</creatorcontrib><title>Another Generalisation of the Logistic Growth Function</title><title>Econometrica</title><description>THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter function with k = 1, or at any rate known, and arises as the solution of the differential equation...which brings out its use in dealing, for example, with the spread of an innovation.</description><subject>Asymptotes</subject><subject>Consumption function</subject><subject>Differential equations</subject><subject>Estimates</subject><subject>Logistic growth</subject><subject>Logistics</subject><subject>Marginal propensity to consume</subject><subject>Mathematical independent variables</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Notes and Comments</subject><subject>Propensity to consume</subject><subject>Standard error</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp10F9LwzAQAPAgCtYpfoWigk_VyzVN2scxXBUKvuhz6fLHtcxmJinitzejex0cHNz9uOOOkFsKT5iDeKYVVEjzM5JQxssMkOM5SQAoZhUv8ZJceT8AQBEjIXw52rDVLq31qF23630Xejum1qSxnDb2q_ehl2nt7G_YputplIf-Nbkw3c7rm2NekM_1y8fqNWve67fVsskkCggZcqGFkNIYIxTLN8JQxWgOJdeiYIVApgUWG8WUKpWiudDRABjJlDad6PIFuZvn7p39mbQP7WAnN8aVLcbzOOVQRHR_ClGsOMMCqiqqx1lJZ7132rR713937q-l0B4-1x4_F-XDLAcfrDvJ_gFJZGk0</recordid><startdate>19690101</startdate><enddate>19690101</enddate><creator>Oliver, F. R.</creator><general>The Econometric Society</general><general>George Banta Pub. Co. for the Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0A</scope><scope>M0C</scope><scope>M0T</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19690101</creationdate><title>Another Generalisation of the Logistic Growth Function</title><author>Oliver, F. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-267e77ccfff7d43b7f1d413086e7545724e725bd4dd8dd137e3b700fc4defa7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><topic>Asymptotes</topic><topic>Consumption function</topic><topic>Differential equations</topic><topic>Estimates</topic><topic>Logistic growth</topic><topic>Logistics</topic><topic>Marginal propensity to consume</topic><topic>Mathematical independent variables</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Notes and Comments</topic><topic>Propensity to consume</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, F. R.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Archive</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, F. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Another Generalisation of the Logistic Growth Function</atitle><jtitle>Econometrica</jtitle><date>1969-01-01</date><risdate>1969</risdate><volume>37</volume><issue>1</issue><spage>144</spage><epage>147</epage><pages>144-147</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter function with k = 1, or at any rate known, and arises as the solution of the differential equation...which brings out its use in dealing, for example, with the spread of an innovation.</abstract><cop>Menasha, Wis</cop><pub>The Econometric Society</pub><doi>10.2307/1909213</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 1969-01, Vol.37 (1), p.144-147
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_journals_214661605
source Periodicals Index Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Asymptotes
Consumption function
Differential equations
Estimates
Logistic growth
Logistics
Marginal propensity to consume
Mathematical independent variables
Maximum likelihood estimation
Maximum likelihood estimators
Notes and Comments
Propensity to consume
Standard error
title Another Generalisation of the Logistic Growth Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Another%20Generalisation%20of%20the%20Logistic%20Growth%20Function&rft.jtitle=Econometrica&rft.au=Oliver,%20F.%20R.&rft.date=1969-01-01&rft.volume=37&rft.issue=1&rft.spage=144&rft.epage=147&rft.pages=144-147&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.2307/1909213&rft_dat=%3Cjstor_proqu%3E1909213%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214661605&rft_id=info:pmid/&rft_jstor_id=1909213&rfr_iscdi=true