Another Generalisation of the Logistic Growth Function
THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter funct...
Gespeichert in:
Veröffentlicht in: | Econometrica 1969-01, Vol.37 (1), p.144-147 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | Econometrica |
container_volume | 37 |
creator | Oliver, F. R. |
description | THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter function with k = 1, or at any rate known, and arises as the solution of the differential equation...which brings out its use in dealing, for example, with the spread of an innovation. |
doi_str_mv | 10.2307/1909213 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_214661605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1909213</jstor_id><sourcerecordid>1909213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-267e77ccfff7d43b7f1d413086e7545724e725bd4dd8dd137e3b700fc4defa7a3</originalsourceid><addsrcrecordid>eNp10F9LwzAQAPAgCtYpfoWigk_VyzVN2scxXBUKvuhz6fLHtcxmJinitzejex0cHNz9uOOOkFsKT5iDeKYVVEjzM5JQxssMkOM5SQAoZhUv8ZJceT8AQBEjIXw52rDVLq31qF23630Xejum1qSxnDb2q_ehl2nt7G_YputplIf-Nbkw3c7rm2NekM_1y8fqNWve67fVsskkCggZcqGFkNIYIxTLN8JQxWgOJdeiYIVApgUWG8WUKpWiudDRABjJlDad6PIFuZvn7p39mbQP7WAnN8aVLcbzOOVQRHR_ClGsOMMCqiqqx1lJZ7132rR713937q-l0B4-1x4_F-XDLAcfrDvJ_gFJZGk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214661605</pqid></control><display><type>article</type><title>Another Generalisation of the Logistic Growth Function</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Oliver, F. R.</creator><creatorcontrib>Oliver, F. R.</creatorcontrib><description>THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter function with k = 1, or at any rate known, and arises as the solution of the differential equation...which brings out its use in dealing, for example, with the spread of an innovation.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.2307/1909213</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Menasha, Wis: The Econometric Society</publisher><subject>Asymptotes ; Consumption function ; Differential equations ; Estimates ; Logistic growth ; Logistics ; Marginal propensity to consume ; Mathematical independent variables ; Maximum likelihood estimation ; Maximum likelihood estimators ; Notes and Comments ; Propensity to consume ; Standard error</subject><ispartof>Econometrica, 1969-01, Vol.37 (1), p.144-147</ispartof><rights>Copyright 1969 The Econometric Society</rights><rights>Copyright Econometric Society 1969</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-267e77ccfff7d43b7f1d413086e7545724e725bd4dd8dd137e3b700fc4defa7a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1909213$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1909213$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,27856,27911,27912,58004,58008,58237,58241</link.rule.ids></links><search><creatorcontrib>Oliver, F. R.</creatorcontrib><title>Another Generalisation of the Logistic Growth Function</title><title>Econometrica</title><description>THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter function with k = 1, or at any rate known, and arises as the solution of the differential equation...which brings out its use in dealing, for example, with the spread of an innovation.</description><subject>Asymptotes</subject><subject>Consumption function</subject><subject>Differential equations</subject><subject>Estimates</subject><subject>Logistic growth</subject><subject>Logistics</subject><subject>Marginal propensity to consume</subject><subject>Mathematical independent variables</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Notes and Comments</subject><subject>Propensity to consume</subject><subject>Standard error</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp10F9LwzAQAPAgCtYpfoWigk_VyzVN2scxXBUKvuhz6fLHtcxmJinitzejex0cHNz9uOOOkFsKT5iDeKYVVEjzM5JQxssMkOM5SQAoZhUv8ZJceT8AQBEjIXw52rDVLq31qF23630Xejum1qSxnDb2q_ehl2nt7G_YputplIf-Nbkw3c7rm2NekM_1y8fqNWve67fVsskkCggZcqGFkNIYIxTLN8JQxWgOJdeiYIVApgUWG8WUKpWiudDRABjJlDad6PIFuZvn7p39mbQP7WAnN8aVLcbzOOVQRHR_ClGsOMMCqiqqx1lJZ7132rR713937q-l0B4-1x4_F-XDLAcfrDvJ_gFJZGk0</recordid><startdate>19690101</startdate><enddate>19690101</enddate><creator>Oliver, F. R.</creator><general>The Econometric Society</general><general>George Banta Pub. Co. for the Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0A</scope><scope>M0C</scope><scope>M0T</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19690101</creationdate><title>Another Generalisation of the Logistic Growth Function</title><author>Oliver, F. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-267e77ccfff7d43b7f1d413086e7545724e725bd4dd8dd137e3b700fc4defa7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><topic>Asymptotes</topic><topic>Consumption function</topic><topic>Differential equations</topic><topic>Estimates</topic><topic>Logistic growth</topic><topic>Logistics</topic><topic>Marginal propensity to consume</topic><topic>Mathematical independent variables</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Notes and Comments</topic><topic>Propensity to consume</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, F. R.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Archive</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, F. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Another Generalisation of the Logistic Growth Function</atitle><jtitle>Econometrica</jtitle><date>1969-01-01</date><risdate>1969</risdate><volume>37</volume><issue>1</issue><spage>144</spage><epage>147</epage><pages>144-147</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>THE THREE PARAMETER logistic function...arises in many economic contexts. Problems of estimating its parameters have been reviewed by the present author in [4, 5], where direct least squares methods were advocated for suitable cases. The function is itself a generalisation of the two parameter function with k = 1, or at any rate known, and arises as the solution of the differential equation...which brings out its use in dealing, for example, with the spread of an innovation.</abstract><cop>Menasha, Wis</cop><pub>The Econometric Society</pub><doi>10.2307/1909213</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 1969-01, Vol.37 (1), p.144-147 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_journals_214661605 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Asymptotes Consumption function Differential equations Estimates Logistic growth Logistics Marginal propensity to consume Mathematical independent variables Maximum likelihood estimation Maximum likelihood estimators Notes and Comments Propensity to consume Standard error |
title | Another Generalisation of the Logistic Growth Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Another%20Generalisation%20of%20the%20Logistic%20Growth%20Function&rft.jtitle=Econometrica&rft.au=Oliver,%20F.%20R.&rft.date=1969-01-01&rft.volume=37&rft.issue=1&rft.spage=144&rft.epage=147&rft.pages=144-147&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.2307/1909213&rft_dat=%3Cjstor_proqu%3E1909213%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214661605&rft_id=info:pmid/&rft_jstor_id=1909213&rfr_iscdi=true |