Effect of autocorrelated data on composite panel production monitoring and control: A comparison of SPC techniques
Traditional statistical process control methodology is based on a fundamental assumption that the process data are independent. A comparison is presented of traditional and non-traditional SPC methodology for controlling the effect of autocorrelated processes in production monitoring and control. Re...
Gespeichert in:
Veröffentlicht in: | Forest products journal 2002-03, Vol.52 (3), p.60-67 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 3 |
container_start_page | 60 |
container_title | Forest products journal |
container_volume | 52 |
creator | NOFFSINGER, John R ANDERSON, R. Bruce |
description | Traditional statistical process control methodology is based on a fundamental assumption that the process data are independent. A comparison is presented of traditional and non-traditional SPC methodology for controlling the effect of autocorrelated processes in production monitoring and control. Results show that, for significantly autocorrelated data, the use of the autoregressive integrated moving average control chart will provide a more consistent technique for detecting assignable or special causes in the continuous production process. |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_214638203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A84544386</galeid><sourcerecordid>A84544386</sourcerecordid><originalsourceid>FETCH-LOGICAL-g285t-5bbef6ff6a5b265f862b3c2e94c920751dfc95e6372080e9858fb11fc680f55b3</originalsourceid><addsrcrecordid>eNptj09LxDAQxYsouK5-hyB4s5AmTZp6W5b1DywoqOcyTSc1S5usaXrw2xvdPS5zGJj5zXtvzrIF45XMa8mr82xBaSHyqqz4ZXY1TTtKaSUkW2RhYwzqSLwhMEevfQg4QMSOdBCBeEe0H_d-shHJHhwOZB98N-to02r0zkYfrOsJuC6RLgY_PJDV_xEEOyUoKb-_rUlE_eXs94zTdXZhYJjw5tiX2efj5mP9nG9fn17Wq23eMyViLtoWjTRGgmiZFEZJ1nLNsC51zVL6ojO6FpjeY1RRrJVQpi0Ko6WiRoiWL7Pbg25K_Ocbm52fg0uWDStKyRWjPEH3B6iHARvrjI8BdI8OAwzeobFpvFKlKEuuZMLzE3iqDkerT_F3xwwwaRhMAKft1OyDHSH8NAUXUsia8l-lyoSX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214638203</pqid></control><display><type>article</type><title>Effect of autocorrelated data on composite panel production monitoring and control: A comparison of SPC techniques</title><source>EBSCOhost Business Source Complete</source><creator>NOFFSINGER, John R ; ANDERSON, R. Bruce</creator><creatorcontrib>NOFFSINGER, John R ; ANDERSON, R. Bruce</creatorcontrib><description>Traditional statistical process control methodology is based on a fundamental assumption that the process data are independent. A comparison is presented of traditional and non-traditional SPC methodology for controlling the effect of autocorrelated processes in production monitoring and control. Results show that, for significantly autocorrelated data, the use of the autoregressive integrated moving average control chart will provide a more consistent technique for detecting assignable or special causes in the continuous production process.</description><identifier>ISSN: 0015-7473</identifier><identifier>EISSN: 2376-9637</identifier><identifier>CODEN: FPJOAB</identifier><language>eng</language><publisher>Madison, WI: Forest Products Society</publisher><subject>Analysis ; Applied sciences ; Composite materials ; Control charts ; Data processing ; Exact sciences and technology ; False alarms ; Forest products industry ; Investigations ; Methodology ; Polymer industry, paints, wood ; Process controls ; Product quality ; Product testing ; Production management ; Random variables ; Statistical analysis ; Statistical process control ; Statistical significance ; Studies ; Wood products ; Wood-based materials ; Wood. Paper. Non wovens</subject><ispartof>Forest products journal, 2002-03, Vol.52 (3), p.60-67</ispartof><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Forest Products Society</rights><rights>Copyright Forest Products Society Mar 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13565690$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NOFFSINGER, John R</creatorcontrib><creatorcontrib>ANDERSON, R. Bruce</creatorcontrib><title>Effect of autocorrelated data on composite panel production monitoring and control: A comparison of SPC techniques</title><title>Forest products journal</title><description>Traditional statistical process control methodology is based on a fundamental assumption that the process data are independent. A comparison is presented of traditional and non-traditional SPC methodology for controlling the effect of autocorrelated processes in production monitoring and control. Results show that, for significantly autocorrelated data, the use of the autoregressive integrated moving average control chart will provide a more consistent technique for detecting assignable or special causes in the continuous production process.</description><subject>Analysis</subject><subject>Applied sciences</subject><subject>Composite materials</subject><subject>Control charts</subject><subject>Data processing</subject><subject>Exact sciences and technology</subject><subject>False alarms</subject><subject>Forest products industry</subject><subject>Investigations</subject><subject>Methodology</subject><subject>Polymer industry, paints, wood</subject><subject>Process controls</subject><subject>Product quality</subject><subject>Product testing</subject><subject>Production management</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Statistical process control</subject><subject>Statistical significance</subject><subject>Studies</subject><subject>Wood products</subject><subject>Wood-based materials</subject><subject>Wood. Paper. Non wovens</subject><issn>0015-7473</issn><issn>2376-9637</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptj09LxDAQxYsouK5-hyB4s5AmTZp6W5b1DywoqOcyTSc1S5usaXrw2xvdPS5zGJj5zXtvzrIF45XMa8mr82xBaSHyqqz4ZXY1TTtKaSUkW2RhYwzqSLwhMEevfQg4QMSOdBCBeEe0H_d-shHJHhwOZB98N-to02r0zkYfrOsJuC6RLgY_PJDV_xEEOyUoKb-_rUlE_eXs94zTdXZhYJjw5tiX2efj5mP9nG9fn17Wq23eMyViLtoWjTRGgmiZFEZJ1nLNsC51zVL6ojO6FpjeY1RRrJVQpi0Ko6WiRoiWL7Pbg25K_Ocbm52fg0uWDStKyRWjPEH3B6iHARvrjI8BdI8OAwzeobFpvFKlKEuuZMLzE3iqDkerT_F3xwwwaRhMAKft1OyDHSH8NAUXUsia8l-lyoSX</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>NOFFSINGER, John R</creator><creator>ANDERSON, R. Bruce</creator><general>Forest Products Society</general><scope>IQODW</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20020301</creationdate><title>Effect of autocorrelated data on composite panel production monitoring and control: A comparison of SPC techniques</title><author>NOFFSINGER, John R ; ANDERSON, R. Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g285t-5bbef6ff6a5b265f862b3c2e94c920751dfc95e6372080e9858fb11fc680f55b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Analysis</topic><topic>Applied sciences</topic><topic>Composite materials</topic><topic>Control charts</topic><topic>Data processing</topic><topic>Exact sciences and technology</topic><topic>False alarms</topic><topic>Forest products industry</topic><topic>Investigations</topic><topic>Methodology</topic><topic>Polymer industry, paints, wood</topic><topic>Process controls</topic><topic>Product quality</topic><topic>Product testing</topic><topic>Production management</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Statistical process control</topic><topic>Statistical significance</topic><topic>Studies</topic><topic>Wood products</topic><topic>Wood-based materials</topic><topic>Wood. Paper. Non wovens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NOFFSINGER, John R</creatorcontrib><creatorcontrib>ANDERSON, R. Bruce</creatorcontrib><collection>Pascal-Francis</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Environment Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Forest products journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NOFFSINGER, John R</au><au>ANDERSON, R. Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of autocorrelated data on composite panel production monitoring and control: A comparison of SPC techniques</atitle><jtitle>Forest products journal</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>52</volume><issue>3</issue><spage>60</spage><epage>67</epage><pages>60-67</pages><issn>0015-7473</issn><eissn>2376-9637</eissn><coden>FPJOAB</coden><abstract>Traditional statistical process control methodology is based on a fundamental assumption that the process data are independent. A comparison is presented of traditional and non-traditional SPC methodology for controlling the effect of autocorrelated processes in production monitoring and control. Results show that, for significantly autocorrelated data, the use of the autoregressive integrated moving average control chart will provide a more consistent technique for detecting assignable or special causes in the continuous production process.</abstract><cop>Madison, WI</cop><pub>Forest Products Society</pub><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-7473 |
ispartof | Forest products journal, 2002-03, Vol.52 (3), p.60-67 |
issn | 0015-7473 2376-9637 |
language | eng |
recordid | cdi_proquest_journals_214638203 |
source | EBSCOhost Business Source Complete |
subjects | Analysis Applied sciences Composite materials Control charts Data processing Exact sciences and technology False alarms Forest products industry Investigations Methodology Polymer industry, paints, wood Process controls Product quality Product testing Production management Random variables Statistical analysis Statistical process control Statistical significance Studies Wood products Wood-based materials Wood. Paper. Non wovens |
title | Effect of autocorrelated data on composite panel production monitoring and control: A comparison of SPC techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20autocorrelated%20data%20on%20composite%20panel%20production%20monitoring%20and%20control:%20A%20comparison%20of%20SPC%20techniques&rft.jtitle=Forest%20products%20journal&rft.au=NOFFSINGER,%20John%20R&rft.date=2002-03-01&rft.volume=52&rft.issue=3&rft.spage=60&rft.epage=67&rft.pages=60-67&rft.issn=0015-7473&rft.eissn=2376-9637&rft.coden=FPJOAB&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA84544386%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214638203&rft_id=info:pmid/&rft_galeid=A84544386&rfr_iscdi=true |