Cluster algebras IV: Coefficients
We study the dependence of a cluster algebra on the choice of coefficients. We write general formulas expressing the cluster variables in any cluster algebra in terms of the initial data; these formulas involve a family of polynomials associated with a particular choice of ‘principal’ coefficients....
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2007-01, Vol.143 (1), p.112-164 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 1 |
container_start_page | 112 |
container_title | Compositio mathematica |
container_volume | 143 |
creator | Fomin, Sergey Zelevinsky, Andrei |
description | We study the dependence of a cluster algebra on the choice of coefficients. We write general formulas expressing the cluster variables in any cluster algebra in terms of the initial data; these formulas involve a family of polynomials associated with a particular choice of ‘principal’ coefficients. We show that the exchange graph of a cluster algebra with principal coefficients covers the exchange graph of any cluster algebra with the same exchange matrix. We investigate two families of parameterizations of cluster monomials by lattice points, determined, respectively, by the denominators of their Laurent expansions and by certain multi-gradings in cluster algebras with principal coefficients. The properties of these parameterizations, some proven and some conjectural, suggest links to duality conjectures of Fock and Goncharov. The coefficient dynamics leads to a natural generalization of Zamolodchikov's $Y$-systems. We establish a Laurent phenomenon for such $Y$-systems, previously known in finite type only, and sharpen the periodicity result from an earlier paper. For cluster algebras of finite type, we identify a canonical ‘universal’ choice of coefficients such that an arbitrary cluster algebra can be obtained from the universal one (of the same type) by an appropriate specialization of coefficients. |
doi_str_mv | 10.1112/S0010437X06002521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214612056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X06002521</cupid><sourcerecordid>1395246371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-73f891f41518a96bf99122eec00e41cec32ce0f78040339ed8362a23cf137e7b3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqHwAewC-8CM7dgOOxTxqFSJBQ-xixx3XKVKm2InC_6eRK3EArGaxT3njnQZu0S4QUR--wqAIIX-BAXAc45HLMFcQ5YbqY5ZMsXZlJ-ysxjXMEKGm4Rdle0QewqpbVdUBxvT-cddWnbkfeMa2vbxnJ1420a6ONwZe398eCufs8XL07y8X2ROgu4zLbwp0EvM0dhC1b4okHMiB0ASHTnBHYHXBiQIUdDSCMUtF86j0KRrMWPX-95d6L4Gin217oawHV9WHKVCDrkaIdxDLnQxBvLVLjQbG74rhGoaovozxOiIg2M3dWiWK_pt_t_6AQwEXN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214612056</pqid></control><display><type>article</type><title>Cluster algebras IV: Coefficients</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge Journals</source><creator>Fomin, Sergey ; Zelevinsky, Andrei</creator><creatorcontrib>Fomin, Sergey ; Zelevinsky, Andrei</creatorcontrib><description>We study the dependence of a cluster algebra on the choice of coefficients. We write general formulas expressing the cluster variables in any cluster algebra in terms of the initial data; these formulas involve a family of polynomials associated with a particular choice of ‘principal’ coefficients. We show that the exchange graph of a cluster algebra with principal coefficients covers the exchange graph of any cluster algebra with the same exchange matrix. We investigate two families of parameterizations of cluster monomials by lattice points, determined, respectively, by the denominators of their Laurent expansions and by certain multi-gradings in cluster algebras with principal coefficients. The properties of these parameterizations, some proven and some conjectural, suggest links to duality conjectures of Fock and Goncharov. The coefficient dynamics leads to a natural generalization of Zamolodchikov's $Y$-systems. We establish a Laurent phenomenon for such $Y$-systems, previously known in finite type only, and sharpen the periodicity result from an earlier paper. For cluster algebras of finite type, we identify a canonical ‘universal’ choice of coefficients such that an arbitrary cluster algebra can be obtained from the universal one (of the same type) by an appropriate specialization of coefficients.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X06002521</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algebra ; Mathematical problems</subject><ispartof>Compositio mathematica, 2007-01, Vol.143 (1), p.112-164</ispartof><rights>Foundation Compositio Mathematica 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-73f891f41518a96bf99122eec00e41cec32ce0f78040339ed8362a23cf137e7b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X06002521/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Fomin, Sergey</creatorcontrib><creatorcontrib>Zelevinsky, Andrei</creatorcontrib><title>Cluster algebras IV: Coefficients</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We study the dependence of a cluster algebra on the choice of coefficients. We write general formulas expressing the cluster variables in any cluster algebra in terms of the initial data; these formulas involve a family of polynomials associated with a particular choice of ‘principal’ coefficients. We show that the exchange graph of a cluster algebra with principal coefficients covers the exchange graph of any cluster algebra with the same exchange matrix. We investigate two families of parameterizations of cluster monomials by lattice points, determined, respectively, by the denominators of their Laurent expansions and by certain multi-gradings in cluster algebras with principal coefficients. The properties of these parameterizations, some proven and some conjectural, suggest links to duality conjectures of Fock and Goncharov. The coefficient dynamics leads to a natural generalization of Zamolodchikov's $Y$-systems. We establish a Laurent phenomenon for such $Y$-systems, previously known in finite type only, and sharpen the periodicity result from an earlier paper. For cluster algebras of finite type, we identify a canonical ‘universal’ choice of coefficients such that an arbitrary cluster algebra can be obtained from the universal one (of the same type) by an appropriate specialization of coefficients.</description><subject>Algebra</subject><subject>Mathematical problems</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EEqHwAewC-8CM7dgOOxTxqFSJBQ-xixx3XKVKm2InC_6eRK3EArGaxT3njnQZu0S4QUR--wqAIIX-BAXAc45HLMFcQ5YbqY5ZMsXZlJ-ysxjXMEKGm4Rdle0QewqpbVdUBxvT-cddWnbkfeMa2vbxnJ1420a6ONwZe398eCufs8XL07y8X2ROgu4zLbwp0EvM0dhC1b4okHMiB0ASHTnBHYHXBiQIUdDSCMUtF86j0KRrMWPX-95d6L4Gin217oawHV9WHKVCDrkaIdxDLnQxBvLVLjQbG74rhGoaovozxOiIg2M3dWiWK_pt_t_6AQwEXN8</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Fomin, Sergey</creator><creator>Zelevinsky, Andrei</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200701</creationdate><title>Cluster algebras IV: Coefficients</title><author>Fomin, Sergey ; Zelevinsky, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-73f891f41518a96bf99122eec00e41cec32ce0f78040339ed8362a23cf137e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Mathematical problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fomin, Sergey</creatorcontrib><creatorcontrib>Zelevinsky, Andrei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fomin, Sergey</au><au>Zelevinsky, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster algebras IV: Coefficients</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2007-01</date><risdate>2007</risdate><volume>143</volume><issue>1</issue><spage>112</spage><epage>164</epage><pages>112-164</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We study the dependence of a cluster algebra on the choice of coefficients. We write general formulas expressing the cluster variables in any cluster algebra in terms of the initial data; these formulas involve a family of polynomials associated with a particular choice of ‘principal’ coefficients. We show that the exchange graph of a cluster algebra with principal coefficients covers the exchange graph of any cluster algebra with the same exchange matrix. We investigate two families of parameterizations of cluster monomials by lattice points, determined, respectively, by the denominators of their Laurent expansions and by certain multi-gradings in cluster algebras with principal coefficients. The properties of these parameterizations, some proven and some conjectural, suggest links to duality conjectures of Fock and Goncharov. The coefficient dynamics leads to a natural generalization of Zamolodchikov's $Y$-systems. We establish a Laurent phenomenon for such $Y$-systems, previously known in finite type only, and sharpen the periodicity result from an earlier paper. For cluster algebras of finite type, we identify a canonical ‘universal’ choice of coefficients such that an arbitrary cluster algebra can be obtained from the universal one (of the same type) by an appropriate specialization of coefficients.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X06002521</doi><tpages>53</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2007-01, Vol.143 (1), p.112-164 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_214612056 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge Journals |
subjects | Algebra Mathematical problems |
title | Cluster algebras IV: Coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20algebras%20IV:%20Coefficients&rft.jtitle=Compositio%20mathematica&rft.au=Fomin,%20Sergey&rft.date=2007-01&rft.volume=143&rft.issue=1&rft.spage=112&rft.epage=164&rft.pages=112-164&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X06002521&rft_dat=%3Cproquest_cross%3E1395246371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214612056&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X06002521&rfr_iscdi=true |