Fast error analysis of continuous GPS observations
It has been generally accepted that the noise in continuous GPS observations can be well described by a power-law plus white noise model. Using maximum likelihood estimation (MLE) the numerical values of the noise model can be estimated. Current methods require calculating the data covariance matrix...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2008-03, Vol.82 (3), p.157-166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 3 |
container_start_page | 157 |
container_title | Journal of geodesy |
container_volume | 82 |
creator | Bos, M. S. Fernandes, R. M. S. Williams, S. D. P. Bastos, L. |
description | It has been generally accepted that the noise in continuous GPS observations can be well described by a power-law plus white noise model. Using maximum likelihood estimation (MLE) the numerical values of the noise model can be estimated. Current methods require calculating the data covariance matrix and inverting it, which is a significant computational burden. Analysing 10 years of daily GPS solutions of a single station can take around 2 h on a regular computer such as a PC with an AMD Athlon
TM
64 X2 dual core processor. When one analyses large networks with hundreds of stations or when one analyses hourly instead of daily solutions, the long computation times becomes a problem. In case the signal only contains power-law noise, the MLE computations can be simplified to a
process where
N
is the number of observations. For the general case of power-law plus white noise, we present a modification of the MLE equations that allows us to reduce the number of computations within the algorithm from a cubic to a quadratic function of the number of observations when there are no data gaps. For time-series of three and eight years, this means in practise a reduction factor of around 35 and 84 in computation time without loss of accuracy. In addition, this modification removes the implicit assumption that there is no environment noise before the first observation. Finally, we present an analytical expression for the uncertainty of the estimated trend if the data only contains power-law noise. |
doi_str_mv | 10.1007/s00190-007-0165-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214566341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1921649681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-80f3d4c711dff1a35306f160f51605d8140b26c8d97084ac2320e09a183223023</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLfgfXVm_yU5SrFVKCio52Wb7EpKzdadRNpvb0IET17mvcPvPYbH2DXCLQLkdwSAJfDBckCj-eGEzVBJwVGW6pTNoFQlz3NU5-yCaDvQuS7MjImloy7zKcWUudbtjtRQFkNWxbZr2j72lK1eXrO4IZ--XdfEli7ZWXA78le_Omfvy4e3xSNfP6-eFvdrXknUHS8gyFpVOWIdAjqpJZiABoIejq4LVLARpirqModCuUpIAR5Kh4UUQoKQc3Yz9e5T_Oo9dXYb-zT8SFag0sZIhQOEE1SlSJR8sPvUfLp0tAh2XMZOy9jRjsvYw5ARU4YGtv3w6a_4_9APCS1kUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214566341</pqid></control><display><type>article</type><title>Fast error analysis of continuous GPS observations</title><source>Springer Nature - Complete Springer Journals</source><creator>Bos, M. S. ; Fernandes, R. M. S. ; Williams, S. D. P. ; Bastos, L.</creator><creatorcontrib>Bos, M. S. ; Fernandes, R. M. S. ; Williams, S. D. P. ; Bastos, L.</creatorcontrib><description>It has been generally accepted that the noise in continuous GPS observations can be well described by a power-law plus white noise model. Using maximum likelihood estimation (MLE) the numerical values of the noise model can be estimated. Current methods require calculating the data covariance matrix and inverting it, which is a significant computational burden. Analysing 10 years of daily GPS solutions of a single station can take around 2 h on a regular computer such as a PC with an AMD Athlon
TM
64 X2 dual core processor. When one analyses large networks with hundreds of stations or when one analyses hourly instead of daily solutions, the long computation times becomes a problem. In case the signal only contains power-law noise, the MLE computations can be simplified to a
process where
N
is the number of observations. For the general case of power-law plus white noise, we present a modification of the MLE equations that allows us to reduce the number of computations within the algorithm from a cubic to a quadratic function of the number of observations when there are no data gaps. For time-series of three and eight years, this means in practise a reduction factor of around 35 and 84 in computation time without loss of accuracy. In addition, this modification removes the implicit assumption that there is no environment noise before the first observation. Finally, we present an analytical expression for the uncertainty of the estimated trend if the data only contains power-law noise.</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-007-0165-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Error analysis ; Geodetics ; Geophysics/Geodesy ; Global positioning systems ; GPS ; Original Article ; Time series</subject><ispartof>Journal of geodesy, 2008-03, Vol.82 (3), p.157-166</ispartof><rights>Springer-Verlag 2007</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-80f3d4c711dff1a35306f160f51605d8140b26c8d97084ac2320e09a183223023</citedby><cites>FETCH-LOGICAL-c315t-80f3d4c711dff1a35306f160f51605d8140b26c8d97084ac2320e09a183223023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00190-007-0165-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00190-007-0165-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bos, M. S.</creatorcontrib><creatorcontrib>Fernandes, R. M. S.</creatorcontrib><creatorcontrib>Williams, S. D. P.</creatorcontrib><creatorcontrib>Bastos, L.</creatorcontrib><title>Fast error analysis of continuous GPS observations</title><title>Journal of geodesy</title><addtitle>J Geod</addtitle><description>It has been generally accepted that the noise in continuous GPS observations can be well described by a power-law plus white noise model. Using maximum likelihood estimation (MLE) the numerical values of the noise model can be estimated. Current methods require calculating the data covariance matrix and inverting it, which is a significant computational burden. Analysing 10 years of daily GPS solutions of a single station can take around 2 h on a regular computer such as a PC with an AMD Athlon
TM
64 X2 dual core processor. When one analyses large networks with hundreds of stations or when one analyses hourly instead of daily solutions, the long computation times becomes a problem. In case the signal only contains power-law noise, the MLE computations can be simplified to a
process where
N
is the number of observations. For the general case of power-law plus white noise, we present a modification of the MLE equations that allows us to reduce the number of computations within the algorithm from a cubic to a quadratic function of the number of observations when there are no data gaps. For time-series of three and eight years, this means in practise a reduction factor of around 35 and 84 in computation time without loss of accuracy. In addition, this modification removes the implicit assumption that there is no environment noise before the first observation. Finally, we present an analytical expression for the uncertainty of the estimated trend if the data only contains power-law noise.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Error analysis</subject><subject>Geodetics</subject><subject>Geophysics/Geodesy</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Original Article</subject><subject>Time series</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLfgfXVm_yU5SrFVKCio52Wb7EpKzdadRNpvb0IET17mvcPvPYbH2DXCLQLkdwSAJfDBckCj-eGEzVBJwVGW6pTNoFQlz3NU5-yCaDvQuS7MjImloy7zKcWUudbtjtRQFkNWxbZr2j72lK1eXrO4IZ--XdfEli7ZWXA78le_Omfvy4e3xSNfP6-eFvdrXknUHS8gyFpVOWIdAjqpJZiABoIejq4LVLARpirqModCuUpIAR5Kh4UUQoKQc3Yz9e5T_Oo9dXYb-zT8SFag0sZIhQOEE1SlSJR8sPvUfLp0tAh2XMZOy9jRjsvYw5ARU4YGtv3w6a_4_9APCS1kUQ</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Bos, M. S.</creator><creator>Fernandes, R. M. S.</creator><creator>Williams, S. D. P.</creator><creator>Bastos, L.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20080301</creationdate><title>Fast error analysis of continuous GPS observations</title><author>Bos, M. S. ; Fernandes, R. M. S. ; Williams, S. D. P. ; Bastos, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-80f3d4c711dff1a35306f160f51605d8140b26c8d97084ac2320e09a183223023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Error analysis</topic><topic>Geodetics</topic><topic>Geophysics/Geodesy</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Original Article</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bos, M. S.</creatorcontrib><creatorcontrib>Fernandes, R. M. S.</creatorcontrib><creatorcontrib>Williams, S. D. P.</creatorcontrib><creatorcontrib>Bastos, L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bos, M. S.</au><au>Fernandes, R. M. S.</au><au>Williams, S. D. P.</au><au>Bastos, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast error analysis of continuous GPS observations</atitle><jtitle>Journal of geodesy</jtitle><stitle>J Geod</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>82</volume><issue>3</issue><spage>157</spage><epage>166</epage><pages>157-166</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>It has been generally accepted that the noise in continuous GPS observations can be well described by a power-law plus white noise model. Using maximum likelihood estimation (MLE) the numerical values of the noise model can be estimated. Current methods require calculating the data covariance matrix and inverting it, which is a significant computational burden. Analysing 10 years of daily GPS solutions of a single station can take around 2 h on a regular computer such as a PC with an AMD Athlon
TM
64 X2 dual core processor. When one analyses large networks with hundreds of stations or when one analyses hourly instead of daily solutions, the long computation times becomes a problem. In case the signal only contains power-law noise, the MLE computations can be simplified to a
process where
N
is the number of observations. For the general case of power-law plus white noise, we present a modification of the MLE equations that allows us to reduce the number of computations within the algorithm from a cubic to a quadratic function of the number of observations when there are no data gaps. For time-series of three and eight years, this means in practise a reduction factor of around 35 and 84 in computation time without loss of accuracy. In addition, this modification removes the implicit assumption that there is no environment noise before the first observation. Finally, we present an analytical expression for the uncertainty of the estimated trend if the data only contains power-law noise.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00190-007-0165-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 2008-03, Vol.82 (3), p.157-166 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_journals_214566341 |
source | Springer Nature - Complete Springer Journals |
subjects | Earth and Environmental Science Earth Sciences Error analysis Geodetics Geophysics/Geodesy Global positioning systems GPS Original Article Time series |
title | Fast error analysis of continuous GPS observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20error%20analysis%20of%20continuous%20GPS%20observations&rft.jtitle=Journal%20of%20geodesy&rft.au=Bos,%20M.%20S.&rft.date=2008-03-01&rft.volume=82&rft.issue=3&rft.spage=157&rft.epage=166&rft.pages=157-166&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-007-0165-x&rft_dat=%3Cproquest_cross%3E1921649681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214566341&rft_id=info:pmid/&rfr_iscdi=true |