A proposal for modelling physical correlations of GPS phase observations
Physical correlations are generally not considered in the stochastic model of GPS observations. Consequently, the resulting estimated parameters (such as station coordinates) are affected and their variances are too optimistic and therefore not appropriate to statistically test the significance of t...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2008-10, Vol.82 (10), p.601-612 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 612 |
---|---|
container_issue | 10 |
container_start_page | 601 |
container_title | Journal of geodesy |
container_volume | 82 |
creator | Schön, Steffen Brunner, Fritz K. |
description | Physical correlations are generally not considered in the stochastic model of GPS observations. Consequently, the resulting estimated parameters (such as station coordinates) are affected and their variances are too optimistic and therefore not appropriate to statistically test the significance of the estimates. Considering atmospheric physics, turbulent irregularities in the lower atmosphere cause physical correlations between GPS signals propagating through them. Based on turbulence theory, a variance–covariance model for double-differenced (DD) GPS phase observations is developed in this paper, termed SIGMA-C model. The resulting fully populated variance–covariance matrix depends not only on the satellite-station geometry but also on the prevailing atmospheric conditions. It is shown that especially the wind velocity and its direction play a key role for the adequate modelling of physical correlations. The comparison of the correlations predicted by the SIGMA-C model and the empirical auto- and cross-correlation functions of DD from a specially designed GPS test network shows good agreement between data and model. Consequently, the SIGMA-C model seems to be suited for the proper description of physical correlations in GPS phase data. Furthermore, the application of the SIGMA-C model now attenuates the unbounded decrease of formal coordinate variances when the number of observations is increased. Hence for small GPS networks, the new model yields more realistic formal coordinate variances—even for high sampling rates and longer observation sessions. |
doi_str_mv | 10.1007/s00190-008-0211-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214560798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896261561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-41c33076360a58b1fc19ab19808884d704509c37cbfc53d91aac80772a8065283</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNviPTqzSTbJsRRthYKCeg7ZNFu3bDdr0gr996as4MnTwLzvvRkeIbcI9wggHxIAaqAAikKJSNkZmSBnJUWm-TmZgOaaSon8klyltM20FKqakOWsGGIYQrJd0YRY7MLad13bb4rh85hal9cuxOg7u29Dn4rQFIvXtyza5ItQJx-_R-WaXDS2S_7md07Jx9Pj-3xJVy-L5_lsRR1DsaccHWMgK1aBFarGxqG2NWoFSim-lsAFaMekqxsn2FqjtU6BlKVVUIlSsSm5G3Pz218Hn_ZmGw6xzydNiVxUIPUJwhFyMaQUfWOG2O5sPBoEc-rLjH2Z3Jc59WVY9pSjJ2W23_j4F_y_6Qekx2wB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214560798</pqid></control><display><type>article</type><title>A proposal for modelling physical correlations of GPS phase observations</title><source>Springer Nature - Complete Springer Journals</source><creator>Schön, Steffen ; Brunner, Fritz K.</creator><creatorcontrib>Schön, Steffen ; Brunner, Fritz K.</creatorcontrib><description>Physical correlations are generally not considered in the stochastic model of GPS observations. Consequently, the resulting estimated parameters (such as station coordinates) are affected and their variances are too optimistic and therefore not appropriate to statistically test the significance of the estimates. Considering atmospheric physics, turbulent irregularities in the lower atmosphere cause physical correlations between GPS signals propagating through them. Based on turbulence theory, a variance–covariance model for double-differenced (DD) GPS phase observations is developed in this paper, termed SIGMA-C model. The resulting fully populated variance–covariance matrix depends not only on the satellite-station geometry but also on the prevailing atmospheric conditions. It is shown that especially the wind velocity and its direction play a key role for the adequate modelling of physical correlations. The comparison of the correlations predicted by the SIGMA-C model and the empirical auto- and cross-correlation functions of DD from a specially designed GPS test network shows good agreement between data and model. Consequently, the SIGMA-C model seems to be suited for the proper description of physical correlations in GPS phase data. Furthermore, the application of the SIGMA-C model now attenuates the unbounded decrease of formal coordinate variances when the number of observations is increased. Hence for small GPS networks, the new model yields more realistic formal coordinate variances—even for high sampling rates and longer observation sessions.</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-008-0211-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Astrophysics ; Atmospheric physics ; Earth and Environmental Science ; Earth Sciences ; Geodetics ; Geophysics ; Geophysics/Geodesy ; Global positioning systems ; GPS ; Original Article ; Stochastic models ; Turbulence ; Wind speed</subject><ispartof>Journal of geodesy, 2008-10, Vol.82 (10), p.601-612</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-41c33076360a58b1fc19ab19808884d704509c37cbfc53d91aac80772a8065283</citedby><cites>FETCH-LOGICAL-c315t-41c33076360a58b1fc19ab19808884d704509c37cbfc53d91aac80772a8065283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00190-008-0211-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00190-008-0211-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Schön, Steffen</creatorcontrib><creatorcontrib>Brunner, Fritz K.</creatorcontrib><title>A proposal for modelling physical correlations of GPS phase observations</title><title>Journal of geodesy</title><addtitle>J Geod</addtitle><description>Physical correlations are generally not considered in the stochastic model of GPS observations. Consequently, the resulting estimated parameters (such as station coordinates) are affected and their variances are too optimistic and therefore not appropriate to statistically test the significance of the estimates. Considering atmospheric physics, turbulent irregularities in the lower atmosphere cause physical correlations between GPS signals propagating through them. Based on turbulence theory, a variance–covariance model for double-differenced (DD) GPS phase observations is developed in this paper, termed SIGMA-C model. The resulting fully populated variance–covariance matrix depends not only on the satellite-station geometry but also on the prevailing atmospheric conditions. It is shown that especially the wind velocity and its direction play a key role for the adequate modelling of physical correlations. The comparison of the correlations predicted by the SIGMA-C model and the empirical auto- and cross-correlation functions of DD from a specially designed GPS test network shows good agreement between data and model. Consequently, the SIGMA-C model seems to be suited for the proper description of physical correlations in GPS phase data. Furthermore, the application of the SIGMA-C model now attenuates the unbounded decrease of formal coordinate variances when the number of observations is increased. Hence for small GPS networks, the new model yields more realistic formal coordinate variances—even for high sampling rates and longer observation sessions.</description><subject>Astrophysics</subject><subject>Atmospheric physics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geodetics</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Original Article</subject><subject>Stochastic models</subject><subject>Turbulence</subject><subject>Wind speed</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNviPTqzSTbJsRRthYKCeg7ZNFu3bDdr0gr996as4MnTwLzvvRkeIbcI9wggHxIAaqAAikKJSNkZmSBnJUWm-TmZgOaaSon8klyltM20FKqakOWsGGIYQrJd0YRY7MLad13bb4rh85hal9cuxOg7u29Dn4rQFIvXtyza5ItQJx-_R-WaXDS2S_7md07Jx9Pj-3xJVy-L5_lsRR1DsaccHWMgK1aBFarGxqG2NWoFSim-lsAFaMekqxsn2FqjtU6BlKVVUIlSsSm5G3Pz218Hn_ZmGw6xzydNiVxUIPUJwhFyMaQUfWOG2O5sPBoEc-rLjH2Z3Jc59WVY9pSjJ2W23_j4F_y_6Qekx2wB</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Schön, Steffen</creator><creator>Brunner, Fritz K.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20081001</creationdate><title>A proposal for modelling physical correlations of GPS phase observations</title><author>Schön, Steffen ; Brunner, Fritz K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-41c33076360a58b1fc19ab19808884d704509c37cbfc53d91aac80772a8065283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astrophysics</topic><topic>Atmospheric physics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geodetics</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Original Article</topic><topic>Stochastic models</topic><topic>Turbulence</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schön, Steffen</creatorcontrib><creatorcontrib>Brunner, Fritz K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schön, Steffen</au><au>Brunner, Fritz K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proposal for modelling physical correlations of GPS phase observations</atitle><jtitle>Journal of geodesy</jtitle><stitle>J Geod</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>82</volume><issue>10</issue><spage>601</spage><epage>612</epage><pages>601-612</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>Physical correlations are generally not considered in the stochastic model of GPS observations. Consequently, the resulting estimated parameters (such as station coordinates) are affected and their variances are too optimistic and therefore not appropriate to statistically test the significance of the estimates. Considering atmospheric physics, turbulent irregularities in the lower atmosphere cause physical correlations between GPS signals propagating through them. Based on turbulence theory, a variance–covariance model for double-differenced (DD) GPS phase observations is developed in this paper, termed SIGMA-C model. The resulting fully populated variance–covariance matrix depends not only on the satellite-station geometry but also on the prevailing atmospheric conditions. It is shown that especially the wind velocity and its direction play a key role for the adequate modelling of physical correlations. The comparison of the correlations predicted by the SIGMA-C model and the empirical auto- and cross-correlation functions of DD from a specially designed GPS test network shows good agreement between data and model. Consequently, the SIGMA-C model seems to be suited for the proper description of physical correlations in GPS phase data. Furthermore, the application of the SIGMA-C model now attenuates the unbounded decrease of formal coordinate variances when the number of observations is increased. Hence for small GPS networks, the new model yields more realistic formal coordinate variances—even for high sampling rates and longer observation sessions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00190-008-0211-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 2008-10, Vol.82 (10), p.601-612 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_journals_214560798 |
source | Springer Nature - Complete Springer Journals |
subjects | Astrophysics Atmospheric physics Earth and Environmental Science Earth Sciences Geodetics Geophysics Geophysics/Geodesy Global positioning systems GPS Original Article Stochastic models Turbulence Wind speed |
title | A proposal for modelling physical correlations of GPS phase observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proposal%20for%20modelling%20physical%20correlations%20of%20GPS%20phase%20observations&rft.jtitle=Journal%20of%20geodesy&rft.au=Sch%C3%B6n,%20Steffen&rft.date=2008-10-01&rft.volume=82&rft.issue=10&rft.spage=601&rft.epage=612&rft.pages=601-612&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-008-0211-3&rft_dat=%3Cproquest_cross%3E1896261561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214560798&rft_id=info:pmid/&rfr_iscdi=true |