A poly-ellipsoid particle for non-spherical discrete element method
Purpose - The purpose of this paper is to present a simple non-symmetric shape, the poly-ellipsoid, to describe particles in discrete element simulations that incur a computational cost similar to ellipsoidal particles.Design methodology approach - Particle shapes are derived from joining octants of...
Gespeichert in:
Veröffentlicht in: | Engineering computations 2009-08, Vol.26 (6), p.645-657 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 657 |
---|---|
container_issue | 6 |
container_start_page | 645 |
container_title | Engineering computations |
container_volume | 26 |
creator | Peters, John F. Hopkins, Mark A. Kala, Raju Wahl, Ronald E. |
description | Purpose - The purpose of this paper is to present a simple non-symmetric shape, the poly-ellipsoid, to describe particles in discrete element simulations that incur a computational cost similar to ellipsoidal particles.Design methodology approach - Particle shapes are derived from joining octants of eight ellipsoids, each having different aspect ratios, across their respective principal planes to produce a compound surface that is continuous in both surface coordinate and normal direction. Because each octant of the poly-ellipsoid is described as an ellipsoid, the mathematical representation of the particle shape can be in the form of either an implicit function or as parametric equations.Findings - The particle surface is defined by six parameters (vs the 24 parameters required to define the eight component ellipsoids) owing to dependencies among parameters that must be imposed to create continuous intersections. Despite the complexity of the particle shapes, the particle mass, centroid and moment of inertia tensor can all be computed in closed form.Practical implications - The particle can be implemented in any contact algorithm designed for ellipsoids with minor modifications to determine in which pair of octants the potential contact occurs.Originality value - The poly-ellipsoid particle is a computational device to represent non-spherical particles in DEM models. |
doi_str_mv | 10.1108/02644400910975441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_journals_214532054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1871933711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-91f78dc4b389363e0b51365460335d98f6dfae873b09c5f8bb1f5c9e7f8ec1673</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwA9giZgzn2o7tsar4kiqxwBwl9llN5cbGTof-e4LKVgamG-553tO9hNwyeGAM9CMsaiEEgGFglBSCnZEZU1JTBUqdk9nPnk4AuyRXpWwBQHEOM7JaVimGA8UQ-lRi76rU5rG3ASsfczXEgZa0wdzbNlSuLzbjiBUG3OEwVjscN9FdkwvfhoI3v3NOPp-fPlavdP3-8rZarqnlEkZqmFfaWdFxbXjNETrJeC1FDZxLZ7SvnW9RK96BsdLrrmNeWoPKa7SsVnxO7o65KcevPZax2cZ9HqaTzYIJyRcgxQSxI2RzLCWjb1Lud20-NAyan6qak6omB47O9FVug_uXcv-3coI2yXn-DQcMdlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214532054</pqid></control><display><type>article</type><title>A poly-ellipsoid particle for non-spherical discrete element method</title><source>Emerald A-Z Current Journals</source><creator>Peters, John F. ; Hopkins, Mark A. ; Kala, Raju ; Wahl, Ronald E.</creator><contributor>Munjiza, Antonio</contributor><creatorcontrib>Peters, John F. ; Hopkins, Mark A. ; Kala, Raju ; Wahl, Ronald E. ; Munjiza, Antonio</creatorcontrib><description>Purpose - The purpose of this paper is to present a simple non-symmetric shape, the poly-ellipsoid, to describe particles in discrete element simulations that incur a computational cost similar to ellipsoidal particles.Design methodology approach - Particle shapes are derived from joining octants of eight ellipsoids, each having different aspect ratios, across their respective principal planes to produce a compound surface that is continuous in both surface coordinate and normal direction. Because each octant of the poly-ellipsoid is described as an ellipsoid, the mathematical representation of the particle shape can be in the form of either an implicit function or as parametric equations.Findings - The particle surface is defined by six parameters (vs the 24 parameters required to define the eight component ellipsoids) owing to dependencies among parameters that must be imposed to create continuous intersections. Despite the complexity of the particle shapes, the particle mass, centroid and moment of inertia tensor can all be computed in closed form.Practical implications - The particle can be implemented in any contact algorithm designed for ellipsoids with minor modifications to determine in which pair of octants the potential contact occurs.Originality value - The poly-ellipsoid particle is a computational device to represent non-spherical particles in DEM models.</description><identifier>ISSN: 0264-4401</identifier><identifier>EISSN: 1758-7077</identifier><identifier>DOI: 10.1108/02644400910975441</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Discrete element method ; Engineering ; Experiments ; Geometry ; Mathematical analysis ; Measurement ; Mechanics ; Particle size ; Programming languages ; Simulation ; Studies</subject><ispartof>Engineering computations, 2009-08, Vol.26 (6), p.645-657</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-91f78dc4b389363e0b51365460335d98f6dfae873b09c5f8bb1f5c9e7f8ec1673</citedby><cites>FETCH-LOGICAL-c350t-91f78dc4b389363e0b51365460335d98f6dfae873b09c5f8bb1f5c9e7f8ec1673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02644400910975441/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02644400910975441/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><contributor>Munjiza, Antonio</contributor><creatorcontrib>Peters, John F.</creatorcontrib><creatorcontrib>Hopkins, Mark A.</creatorcontrib><creatorcontrib>Kala, Raju</creatorcontrib><creatorcontrib>Wahl, Ronald E.</creatorcontrib><title>A poly-ellipsoid particle for non-spherical discrete element method</title><title>Engineering computations</title><description>Purpose - The purpose of this paper is to present a simple non-symmetric shape, the poly-ellipsoid, to describe particles in discrete element simulations that incur a computational cost similar to ellipsoidal particles.Design methodology approach - Particle shapes are derived from joining octants of eight ellipsoids, each having different aspect ratios, across their respective principal planes to produce a compound surface that is continuous in both surface coordinate and normal direction. Because each octant of the poly-ellipsoid is described as an ellipsoid, the mathematical representation of the particle shape can be in the form of either an implicit function or as parametric equations.Findings - The particle surface is defined by six parameters (vs the 24 parameters required to define the eight component ellipsoids) owing to dependencies among parameters that must be imposed to create continuous intersections. Despite the complexity of the particle shapes, the particle mass, centroid and moment of inertia tensor can all be computed in closed form.Practical implications - The particle can be implemented in any contact algorithm designed for ellipsoids with minor modifications to determine in which pair of octants the potential contact occurs.Originality value - The poly-ellipsoid particle is a computational device to represent non-spherical particles in DEM models.</description><subject>Discrete element method</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Mechanics</subject><subject>Particle size</subject><subject>Programming languages</subject><subject>Simulation</subject><subject>Studies</subject><issn>0264-4401</issn><issn>1758-7077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkD1PwzAQhi0EEqXwA9giZgzn2o7tsar4kiqxwBwl9llN5cbGTof-e4LKVgamG-553tO9hNwyeGAM9CMsaiEEgGFglBSCnZEZU1JTBUqdk9nPnk4AuyRXpWwBQHEOM7JaVimGA8UQ-lRi76rU5rG3ASsfczXEgZa0wdzbNlSuLzbjiBUG3OEwVjscN9FdkwvfhoI3v3NOPp-fPlavdP3-8rZarqnlEkZqmFfaWdFxbXjNETrJeC1FDZxLZ7SvnW9RK96BsdLrrmNeWoPKa7SsVnxO7o65KcevPZax2cZ9HqaTzYIJyRcgxQSxI2RzLCWjb1Lud20-NAyan6qak6omB47O9FVug_uXcv-3coI2yXn-DQcMdlw</recordid><startdate>20090821</startdate><enddate>20090821</enddate><creator>Peters, John F.</creator><creator>Hopkins, Mark A.</creator><creator>Kala, Raju</creator><creator>Wahl, Ronald E.</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090821</creationdate><title>A poly-ellipsoid particle for non-spherical discrete element method</title><author>Peters, John F. ; Hopkins, Mark A. ; Kala, Raju ; Wahl, Ronald E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-91f78dc4b389363e0b51365460335d98f6dfae873b09c5f8bb1f5c9e7f8ec1673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Discrete element method</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Mechanics</topic><topic>Particle size</topic><topic>Programming languages</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, John F.</creatorcontrib><creatorcontrib>Hopkins, Mark A.</creatorcontrib><creatorcontrib>Kala, Raju</creatorcontrib><creatorcontrib>Wahl, Ronald E.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering computations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, John F.</au><au>Hopkins, Mark A.</au><au>Kala, Raju</au><au>Wahl, Ronald E.</au><au>Munjiza, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A poly-ellipsoid particle for non-spherical discrete element method</atitle><jtitle>Engineering computations</jtitle><date>2009-08-21</date><risdate>2009</risdate><volume>26</volume><issue>6</issue><spage>645</spage><epage>657</epage><pages>645-657</pages><issn>0264-4401</issn><eissn>1758-7077</eissn><abstract>Purpose - The purpose of this paper is to present a simple non-symmetric shape, the poly-ellipsoid, to describe particles in discrete element simulations that incur a computational cost similar to ellipsoidal particles.Design methodology approach - Particle shapes are derived from joining octants of eight ellipsoids, each having different aspect ratios, across their respective principal planes to produce a compound surface that is continuous in both surface coordinate and normal direction. Because each octant of the poly-ellipsoid is described as an ellipsoid, the mathematical representation of the particle shape can be in the form of either an implicit function or as parametric equations.Findings - The particle surface is defined by six parameters (vs the 24 parameters required to define the eight component ellipsoids) owing to dependencies among parameters that must be imposed to create continuous intersections. Despite the complexity of the particle shapes, the particle mass, centroid and moment of inertia tensor can all be computed in closed form.Practical implications - The particle can be implemented in any contact algorithm designed for ellipsoids with minor modifications to determine in which pair of octants the potential contact occurs.Originality value - The poly-ellipsoid particle is a computational device to represent non-spherical particles in DEM models.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/02644400910975441</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-4401 |
ispartof | Engineering computations, 2009-08, Vol.26 (6), p.645-657 |
issn | 0264-4401 1758-7077 |
language | eng |
recordid | cdi_proquest_journals_214532054 |
source | Emerald A-Z Current Journals |
subjects | Discrete element method Engineering Experiments Geometry Mathematical analysis Measurement Mechanics Particle size Programming languages Simulation Studies |
title | A poly-ellipsoid particle for non-spherical discrete element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20poly-ellipsoid%20particle%20for%20non-spherical%20discrete%20element%20method&rft.jtitle=Engineering%20computations&rft.au=Peters,%20John%20F.&rft.date=2009-08-21&rft.volume=26&rft.issue=6&rft.spage=645&rft.epage=657&rft.pages=645-657&rft.issn=0264-4401&rft.eissn=1758-7077&rft_id=info:doi/10.1108/02644400910975441&rft_dat=%3Cproquest_emera%3E1871933711%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214532054&rft_id=info:pmid/&rfr_iscdi=true |