Conditional median: A parametric solution concept for location problems
Classical approaches to location problems are based on the minimization of the average distance (the median concept) or the minimization of the maximum distance (the center concept) to the service facilities. The median solution concept is primarily concerned with the spatial efficiency while the ce...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2002-02, Vol.110 (1), p.167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 167 |
container_title | Annals of operations research |
container_volume | 110 |
creator | Ogryczak, Wlodzimierz Zawadzki, Mariusz |
description | Classical approaches to location problems are based on the minimization of the average distance (the median concept) or the minimization of the maximum distance (the center concept) to the service facilities. The median solution concept is primarily concerned with the spatial efficiency while the center concept is focused on the spatial equity. The k-centrum model unifies both the concepts by minimization of the sum of the k largest distances. In this paper we investigate a solution concept of the conditional median which is a generalization of the k-centrum concept taking into account the portion of demand related to the largest distances. Namely, for a specified portion (quantile) of demand we take into account the entire group of the corresponding largest distances and we minimize their average. It is shown that such an objective, similar to the standard minimax, may be modeled with a number of simple linear inequalities. Equitable properties of the solution concept are examined. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1020723818980 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_214508326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>386963151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-dcac9e4e550709d6a90f0c87aa5daad029d1fe02852df06e175adc40b85fd69a3</originalsourceid><addsrcrecordid>eNotjktLxDAUhYMoWEfXboP76s1N0yazK0VHYcDNzHq4kwd0aJvatP_f-lh9cA585zD2KOBZAMqXersCKpRaaKPhimVCVZgbKfU1ywBVkSsp4ZbdpXQBACG0ytiuiYNr5zYO1PHeu5aGLa_5SBP1fp5ay1Pslp-e2zhYP848xIl30dJvOE7x3Pk-3bObQF3yD__csOPb66F5z_efu4-m3ucWsZxzZ8kaX3iloALjSjIQwOqKSDkiB2icCB5QK3QBSi8qRc4WcNYquNKQ3LCnP-86_LX4NJ8ucZnW8-mEolCgJZbyGzvbTnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214508326</pqid></control><display><type>article</type><title>Conditional median: A parametric solution concept for location problems</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ogryczak, Wlodzimierz ; Zawadzki, Mariusz</creator><creatorcontrib>Ogryczak, Wlodzimierz ; Zawadzki, Mariusz</creatorcontrib><description>Classical approaches to location problems are based on the minimization of the average distance (the median concept) or the minimization of the maximum distance (the center concept) to the service facilities. The median solution concept is primarily concerned with the spatial efficiency while the center concept is focused on the spatial equity. The k-centrum model unifies both the concepts by minimization of the sum of the k largest distances. In this paper we investigate a solution concept of the conditional median which is a generalization of the k-centrum concept taking into account the portion of demand related to the largest distances. Namely, for a specified portion (quantile) of demand we take into account the entire group of the corresponding largest distances and we minimize their average. It is shown that such an objective, similar to the standard minimax, may be modeled with a number of simple linear inequalities. Equitable properties of the solution concept are examined. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1023/A:1020723818980</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Efficiency ; Equity ; Facilities ; Operations research ; Optimization ; Population density ; Studies</subject><ispartof>Annals of operations research, 2002-02, Vol.110 (1), p.167</ispartof><rights>Copyright Kluwer Academic Publishers Feb 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-dcac9e4e550709d6a90f0c87aa5daad029d1fe02852df06e175adc40b85fd69a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ogryczak, Wlodzimierz</creatorcontrib><creatorcontrib>Zawadzki, Mariusz</creatorcontrib><title>Conditional median: A parametric solution concept for location problems</title><title>Annals of operations research</title><description>Classical approaches to location problems are based on the minimization of the average distance (the median concept) or the minimization of the maximum distance (the center concept) to the service facilities. The median solution concept is primarily concerned with the spatial efficiency while the center concept is focused on the spatial equity. The k-centrum model unifies both the concepts by minimization of the sum of the k largest distances. In this paper we investigate a solution concept of the conditional median which is a generalization of the k-centrum concept taking into account the portion of demand related to the largest distances. Namely, for a specified portion (quantile) of demand we take into account the entire group of the corresponding largest distances and we minimize their average. It is shown that such an objective, similar to the standard minimax, may be modeled with a number of simple linear inequalities. Equitable properties of the solution concept are examined. [PUBLICATION ABSTRACT]</description><subject>Efficiency</subject><subject>Equity</subject><subject>Facilities</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Population density</subject><subject>Studies</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjktLxDAUhYMoWEfXboP76s1N0yazK0VHYcDNzHq4kwd0aJvatP_f-lh9cA585zD2KOBZAMqXersCKpRaaKPhimVCVZgbKfU1ywBVkSsp4ZbdpXQBACG0ytiuiYNr5zYO1PHeu5aGLa_5SBP1fp5ay1Pslp-e2zhYP848xIl30dJvOE7x3Pk-3bObQF3yD__csOPb66F5z_efu4-m3ucWsZxzZ8kaX3iloALjSjIQwOqKSDkiB2icCB5QK3QBSi8qRc4WcNYquNKQ3LCnP-86_LX4NJ8ucZnW8-mEolCgJZbyGzvbTnM</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Ogryczak, Wlodzimierz</creator><creator>Zawadzki, Mariusz</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020201</creationdate><title>Conditional median: A parametric solution concept for location problems</title><author>Ogryczak, Wlodzimierz ; Zawadzki, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-dcac9e4e550709d6a90f0c87aa5daad029d1fe02852df06e175adc40b85fd69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Efficiency</topic><topic>Equity</topic><topic>Facilities</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Population density</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogryczak, Wlodzimierz</creatorcontrib><creatorcontrib>Zawadzki, Mariusz</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogryczak, Wlodzimierz</au><au>Zawadzki, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional median: A parametric solution concept for location problems</atitle><jtitle>Annals of operations research</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>110</volume><issue>1</issue><spage>167</spage><pages>167-</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Classical approaches to location problems are based on the minimization of the average distance (the median concept) or the minimization of the maximum distance (the center concept) to the service facilities. The median solution concept is primarily concerned with the spatial efficiency while the center concept is focused on the spatial equity. The k-centrum model unifies both the concepts by minimization of the sum of the k largest distances. In this paper we investigate a solution concept of the conditional median which is a generalization of the k-centrum concept taking into account the portion of demand related to the largest distances. Namely, for a specified portion (quantile) of demand we take into account the entire group of the corresponding largest distances and we minimize their average. It is shown that such an objective, similar to the standard minimax, may be modeled with a number of simple linear inequalities. Equitable properties of the solution concept are examined. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1020723818980</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2002-02, Vol.110 (1), p.167 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_214508326 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Efficiency Equity Facilities Operations research Optimization Population density Studies |
title | Conditional median: A parametric solution concept for location problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20median:%20A%20parametric%20solution%20concept%20for%20location%20problems&rft.jtitle=Annals%20of%20operations%20research&rft.au=Ogryczak,%20Wlodzimierz&rft.date=2002-02-01&rft.volume=110&rft.issue=1&rft.spage=167&rft.pages=167-&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1023/A:1020723818980&rft_dat=%3Cproquest%3E386963151%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214508326&rft_id=info:pmid/&rfr_iscdi=true |