Convex normalizations in lift-and-project methods for 0-1 programming
Branch-and-Cut algorithms for general 0-1 mixed integer programs can be successfully implemented by using Lift-and-Project (L&P) methods to generate cuts. L&P cuts are drawn from a cone of valid inequalities that is unbounded and, thus, needs to be truncated, or "normalized". We co...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2002-10, Vol.116 (1), p.91 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Annals of operations research |
container_volume | 116 |
creator | Rey, Pablo A Sagastizabal, Claudia A |
description | Branch-and-Cut algorithms for general 0-1 mixed integer programs can be successfully implemented by using Lift-and-Project (L&P) methods to generate cuts. L&P cuts are drawn from a cone of valid inequalities that is unbounded and, thus, needs to be truncated, or "normalized". We consider general normalizations defined by arbitrary closed convex sets and derive dual problems for generating L&P cuts. This unified theoretical framework generalizes and covers a wide group of already known normalizations. We also give conditions for proving finite convergence of the cutting plane procedure that results from using such general L&P cuts. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1021320028145 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_214508052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>386966221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-f9668fb8a17f7f98a5b996959f8ecf461c1ff3b1350f3c8bf86e95649fe788dc3</originalsourceid><addsrcrecordid>eNotj01LxDAURYMoWEfXboP76EvSpIm7YRg_YMCNroc0zRtb2kSbjIi_3oKuDpzFPVxCrjncchDybn2_gEsBIAyv1QmpuGoEs1KaU1KBUDVTUsI5uch5AADOjarIdpPiV_imMc2TG_sfV_oUM-0jHXsszMWOfcxpCL7QKZT31GWKaabAOF38YXbT1MfDJTlDN-Zw9c8VeXvYvm6e2O7l8Xmz3jEvhC4MrdYGW-N4gw1a41RrrbbKogkea809R5QtlwpQetOi0cEqXVsMjTGdlyty87e7tD-PIZf9kI5zXJJ7sXwGA0rIXxyPTMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214508052</pqid></control><display><type>article</type><title>Convex normalizations in lift-and-project methods for 0-1 programming</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Rey, Pablo A ; Sagastizabal, Claudia A</creator><creatorcontrib>Rey, Pablo A ; Sagastizabal, Claudia A</creatorcontrib><description>Branch-and-Cut algorithms for general 0-1 mixed integer programs can be successfully implemented by using Lift-and-Project (L&P) methods to generate cuts. L&P cuts are drawn from a cone of valid inequalities that is unbounded and, thus, needs to be truncated, or "normalized". We consider general normalizations defined by arbitrary closed convex sets and derive dual problems for generating L&P cuts. This unified theoretical framework generalizes and covers a wide group of already known normalizations. We also give conditions for proving finite convergence of the cutting plane procedure that results from using such general L&P cuts. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1023/A:1021320028145</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Computer programming ; Convex analysis ; Integer programming ; Linear programming ; Operations research ; Studies</subject><ispartof>Annals of operations research, 2002-10, Vol.116 (1), p.91</ispartof><rights>Copyright Kluwer Academic Publishers Oct 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-f9668fb8a17f7f98a5b996959f8ecf461c1ff3b1350f3c8bf86e95649fe788dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rey, Pablo A</creatorcontrib><creatorcontrib>Sagastizabal, Claudia A</creatorcontrib><title>Convex normalizations in lift-and-project methods for 0-1 programming</title><title>Annals of operations research</title><description>Branch-and-Cut algorithms for general 0-1 mixed integer programs can be successfully implemented by using Lift-and-Project (L&P) methods to generate cuts. L&P cuts are drawn from a cone of valid inequalities that is unbounded and, thus, needs to be truncated, or "normalized". We consider general normalizations defined by arbitrary closed convex sets and derive dual problems for generating L&P cuts. This unified theoretical framework generalizes and covers a wide group of already known normalizations. We also give conditions for proving finite convergence of the cutting plane procedure that results from using such general L&P cuts. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Computer programming</subject><subject>Convex analysis</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Operations research</subject><subject>Studies</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotj01LxDAURYMoWEfXboP76EvSpIm7YRg_YMCNroc0zRtb2kSbjIi_3oKuDpzFPVxCrjncchDybn2_gEsBIAyv1QmpuGoEs1KaU1KBUDVTUsI5uch5AADOjarIdpPiV_imMc2TG_sfV_oUM-0jHXsszMWOfcxpCL7QKZT31GWKaabAOF38YXbT1MfDJTlDN-Zw9c8VeXvYvm6e2O7l8Xmz3jEvhC4MrdYGW-N4gw1a41RrrbbKogkea809R5QtlwpQetOi0cEqXVsMjTGdlyty87e7tD-PIZf9kI5zXJJ7sXwGA0rIXxyPTMM</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Rey, Pablo A</creator><creator>Sagastizabal, Claudia A</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20021001</creationdate><title>Convex normalizations in lift-and-project methods for 0-1 programming</title><author>Rey, Pablo A ; Sagastizabal, Claudia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-f9668fb8a17f7f98a5b996959f8ecf461c1ff3b1350f3c8bf86e95649fe788dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Computer programming</topic><topic>Convex analysis</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Operations research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rey, Pablo A</creatorcontrib><creatorcontrib>Sagastizabal, Claudia A</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rey, Pablo A</au><au>Sagastizabal, Claudia A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex normalizations in lift-and-project methods for 0-1 programming</atitle><jtitle>Annals of operations research</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>116</volume><issue>1</issue><spage>91</spage><pages>91-</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Branch-and-Cut algorithms for general 0-1 mixed integer programs can be successfully implemented by using Lift-and-Project (L&P) methods to generate cuts. L&P cuts are drawn from a cone of valid inequalities that is unbounded and, thus, needs to be truncated, or "normalized". We consider general normalizations defined by arbitrary closed convex sets and derive dual problems for generating L&P cuts. This unified theoretical framework generalizes and covers a wide group of already known normalizations. We also give conditions for proving finite convergence of the cutting plane procedure that results from using such general L&P cuts. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1021320028145</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2002-10, Vol.116 (1), p.91 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_214508052 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Computer programming Convex analysis Integer programming Linear programming Operations research Studies |
title | Convex normalizations in lift-and-project methods for 0-1 programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20normalizations%20in%20lift-and-project%20methods%20for%200-1%20programming&rft.jtitle=Annals%20of%20operations%20research&rft.au=Rey,%20Pablo%20A&rft.date=2002-10-01&rft.volume=116&rft.issue=1&rft.spage=91&rft.pages=91-&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1023/A:1021320028145&rft_dat=%3Cproquest%3E386966221%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214508052&rft_id=info:pmid/&rfr_iscdi=true |