BoneRoute: An adaptive memory-based method for effective fleet management
This paper presents an adaptive memory-based method for solving the Capacitated Vehicle Routing Problem (CVRP), called BoneRoute. The CVRP deals with the problem of finding the optimal sequence of deliveries conducted by a fleet of homogeneous vehicles, based at one depot, to serve a set of customer...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2002-09, Vol.115 (1), p.227 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 227 |
container_title | Annals of operations research |
container_volume | 115 |
creator | Tarantilis, C D Kiranoudis, C T |
description | This paper presents an adaptive memory-based method for solving the Capacitated Vehicle Routing Problem (CVRP), called BoneRoute. The CVRP deals with the problem of finding the optimal sequence of deliveries conducted by a fleet of homogeneous vehicles, based at one depot, to serve a set of customers. The computational performance of the BoneRoute was found to be very efficient, producing high quality solutions over two sets of well known case studies examined. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1021157406318 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_214506584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>386963761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-e432bde45b5ea4884e7808a834bc1bd379f39e8510b1a95de7936d10b807f6333</originalsourceid><addsrcrecordid>eNotjU1LxDAURYMoWEfXboP76Ete0qazq4MfAwOC6HpImhd1mDZjmwr-e4u6OvfA5V7GLiVcS1B40yxnSGkqDSVKe8SKOStRI9pjVoAyWhhEOGVn47gDACmtKdj6NvX0nKZMS9703AV3yB9fxDvq0vAtvBspzJLfU-AxDZxipPa3EfdEmXeud2_UUZ_P2Ul0-5Eu_rlgr_d3L6tHsXl6WK-ajWiVKrMgjcoH0sYbctpaTZUF6yxq30ofsKoj1mSNBC9dbQJVNZZhNgtVLBFxwa7-dg9D-pxozNtdmoZ-vtwqqQ2Uxmr8AUNUTXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214506584</pqid></control><display><type>article</type><title>BoneRoute: An adaptive memory-based method for effective fleet management</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Tarantilis, C D ; Kiranoudis, C T</creator><creatorcontrib>Tarantilis, C D ; Kiranoudis, C T</creatorcontrib><description>This paper presents an adaptive memory-based method for solving the Capacitated Vehicle Routing Problem (CVRP), called BoneRoute. The CVRP deals with the problem of finding the optimal sequence of deliveries conducted by a fleet of homogeneous vehicles, based at one depot, to serve a set of customers. The computational performance of the BoneRoute was found to be very efficient, producing high quality solutions over two sets of well known case studies examined. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1023/A:1021157406318</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Bones ; Customers ; Heuristic ; Methods ; Motor vehicle fleets ; Operations research ; Studies ; Vehicles</subject><ispartof>Annals of operations research, 2002-09, Vol.115 (1), p.227</ispartof><rights>Copyright Kluwer Academic Publishers Sep 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-e432bde45b5ea4884e7808a834bc1bd379f39e8510b1a95de7936d10b807f6333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tarantilis, C D</creatorcontrib><creatorcontrib>Kiranoudis, C T</creatorcontrib><title>BoneRoute: An adaptive memory-based method for effective fleet management</title><title>Annals of operations research</title><description>This paper presents an adaptive memory-based method for solving the Capacitated Vehicle Routing Problem (CVRP), called BoneRoute. The CVRP deals with the problem of finding the optimal sequence of deliveries conducted by a fleet of homogeneous vehicles, based at one depot, to serve a set of customers. The computational performance of the BoneRoute was found to be very efficient, producing high quality solutions over two sets of well known case studies examined. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Bones</subject><subject>Customers</subject><subject>Heuristic</subject><subject>Methods</subject><subject>Motor vehicle fleets</subject><subject>Operations research</subject><subject>Studies</subject><subject>Vehicles</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjU1LxDAURYMoWEfXboP76Ete0qazq4MfAwOC6HpImhd1mDZjmwr-e4u6OvfA5V7GLiVcS1B40yxnSGkqDSVKe8SKOStRI9pjVoAyWhhEOGVn47gDACmtKdj6NvX0nKZMS9703AV3yB9fxDvq0vAtvBspzJLfU-AxDZxipPa3EfdEmXeud2_UUZ_P2Ul0-5Eu_rlgr_d3L6tHsXl6WK-ajWiVKrMgjcoH0sYbctpaTZUF6yxq30ofsKoj1mSNBC9dbQJVNZZhNgtVLBFxwa7-dg9D-pxozNtdmoZ-vtwqqQ2Uxmr8AUNUTXk</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Tarantilis, C D</creator><creator>Kiranoudis, C T</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020901</creationdate><title>BoneRoute: An adaptive memory-based method for effective fleet management</title><author>Tarantilis, C D ; Kiranoudis, C T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-e432bde45b5ea4884e7808a834bc1bd379f39e8510b1a95de7936d10b807f6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Bones</topic><topic>Customers</topic><topic>Heuristic</topic><topic>Methods</topic><topic>Motor vehicle fleets</topic><topic>Operations research</topic><topic>Studies</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarantilis, C D</creatorcontrib><creatorcontrib>Kiranoudis, C T</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarantilis, C D</au><au>Kiranoudis, C T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BoneRoute: An adaptive memory-based method for effective fleet management</atitle><jtitle>Annals of operations research</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>115</volume><issue>1</issue><spage>227</spage><pages>227-</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>This paper presents an adaptive memory-based method for solving the Capacitated Vehicle Routing Problem (CVRP), called BoneRoute. The CVRP deals with the problem of finding the optimal sequence of deliveries conducted by a fleet of homogeneous vehicles, based at one depot, to serve a set of customers. The computational performance of the BoneRoute was found to be very efficient, producing high quality solutions over two sets of well known case studies examined. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1021157406318</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2002-09, Vol.115 (1), p.227 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_214506584 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Algorithms Bones Customers Heuristic Methods Motor vehicle fleets Operations research Studies Vehicles |
title | BoneRoute: An adaptive memory-based method for effective fleet management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BoneRoute:%20An%20adaptive%20memory-based%20method%20for%20effective%20fleet%20management&rft.jtitle=Annals%20of%20operations%20research&rft.au=Tarantilis,%20C%20D&rft.date=2002-09-01&rft.volume=115&rft.issue=1&rft.spage=227&rft.pages=227-&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1023/A:1021157406318&rft_dat=%3Cproquest%3E386963761%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214506584&rft_id=info:pmid/&rfr_iscdi=true |