Estimating parameters of a microsimulation model for breast cancer screening using the score function method

In developing decision-making models for the evaluation of medical procedures, the model parameters can be estimated by fitting the model to data observed in (randomized) trials. For complex models that are implemented by discrete event simulation (microsimulation) of individual life histories, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2003-03, Vol.119 (1), p.43
Hauptverfasser: Sita Y G L Tan, van Oortmarssen, Gerrit J, Piersma, Nanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 43
container_title Annals of operations research
container_volume 119
creator Sita Y G L Tan
van Oortmarssen, Gerrit J
Piersma, Nanda
description In developing decision-making models for the evaluation of medical procedures, the model parameters can be estimated by fitting the model to data observed in (randomized) trials. For complex models that are implemented by discrete event simulation (microsimulation) of individual life histories, the Score Function (SF) method can potentially be an appropriate approach for such estimation exercises. We test this approach for a microsimulation model for breast cancer screening that is fitted to data from the HIP randomized trial for early detection of breast cancer. Comparison of the parameter values estimated using the SF method and the analytical solution shows that method performs well on this simple model. The precision of the estimated parameter values depends (as expected) on the size of the sample of simulated life histories, and on the number of parameters estimated. Using analytical representations for parts of the microsimulation model can increase the precision of the estimated parameter values. Compared to the Nelder and Mead Simplex method which is often used in stochastic simulation because of its ease of implementation, the SF method is clearly more efficient (ratio computer time: precision of estimates). The additional analytical investment needed to implement the SF method in an (existing) simulation model may well be worth the effort.
doi_str_mv 10.1023/A:1022922204299
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_214506304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>405388721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-8c3a280f8f2c3fce515007823fd934ed063c58b2ae68d3a99a21aa35d6afe7713</originalsourceid><addsrcrecordid>eNotjUtPwzAQhC0EEqVw5mpxD9i7ceJwq6rykCpxgXO1ddY0VRIX2_n_pILLfNKMZkaIe60etQJ8Wj3PgAYAVAlNcyEW2tRQNIj2UiwUmLIwiOpa3KR0VEppbc1C9JuUu4FyN37LE0UaOHNMMnhJcuhcDKkbpn7OwyiH0HIvfYhyH5lSlo5Gx1EmF5nH88KUzpoPPHshsvTT6P6qnA-hvRVXnvrEd_9ciq-Xzef6rdh-vL6vV9vCAVS5sA4JrPLWg0Pv2GijVG0Bfdtgya2q0Bm7B-LKtkhNQ6CJ0LQVea5rjUvx8Ld7iuFn4pR3xzDFcb7cgS7N3Fcl_gKMPVvt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214506304</pqid></control><display><type>article</type><title>Estimating parameters of a microsimulation model for breast cancer screening using the score function method</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sita Y G L Tan ; van Oortmarssen, Gerrit J ; Piersma, Nanda</creator><creatorcontrib>Sita Y G L Tan ; van Oortmarssen, Gerrit J ; Piersma, Nanda</creatorcontrib><description>In developing decision-making models for the evaluation of medical procedures, the model parameters can be estimated by fitting the model to data observed in (randomized) trials. For complex models that are implemented by discrete event simulation (microsimulation) of individual life histories, the Score Function (SF) method can potentially be an appropriate approach for such estimation exercises. We test this approach for a microsimulation model for breast cancer screening that is fitted to data from the HIP randomized trial for early detection of breast cancer. Comparison of the parameter values estimated using the SF method and the analytical solution shows that method performs well on this simple model. The precision of the estimated parameter values depends (as expected) on the size of the sample of simulated life histories, and on the number of parameters estimated. Using analytical representations for parts of the microsimulation model can increase the precision of the estimated parameter values. Compared to the Nelder and Mead Simplex method which is often used in stochastic simulation because of its ease of implementation, the SF method is clearly more efficient (ratio computer time: precision of estimates). The additional analytical investment needed to implement the SF method in an (existing) simulation model may well be worth the effort.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1023/A:1022922204299</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Breast cancer ; Cancer ; Clinical trials ; Decision making ; Disease control ; Epidemiology ; Estimates ; Medical screening ; Methods ; Operations research ; Optimization ; Simulation ; Studies</subject><ispartof>Annals of operations research, 2003-03, Vol.119 (1), p.43</ispartof><rights>Copyright Kluwer Academic Publishers Mar 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-8c3a280f8f2c3fce515007823fd934ed063c58b2ae68d3a99a21aa35d6afe7713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sita Y G L Tan</creatorcontrib><creatorcontrib>van Oortmarssen, Gerrit J</creatorcontrib><creatorcontrib>Piersma, Nanda</creatorcontrib><title>Estimating parameters of a microsimulation model for breast cancer screening using the score function method</title><title>Annals of operations research</title><description>In developing decision-making models for the evaluation of medical procedures, the model parameters can be estimated by fitting the model to data observed in (randomized) trials. For complex models that are implemented by discrete event simulation (microsimulation) of individual life histories, the Score Function (SF) method can potentially be an appropriate approach for such estimation exercises. We test this approach for a microsimulation model for breast cancer screening that is fitted to data from the HIP randomized trial for early detection of breast cancer. Comparison of the parameter values estimated using the SF method and the analytical solution shows that method performs well on this simple model. The precision of the estimated parameter values depends (as expected) on the size of the sample of simulated life histories, and on the number of parameters estimated. Using analytical representations for parts of the microsimulation model can increase the precision of the estimated parameter values. Compared to the Nelder and Mead Simplex method which is often used in stochastic simulation because of its ease of implementation, the SF method is clearly more efficient (ratio computer time: precision of estimates). The additional analytical investment needed to implement the SF method in an (existing) simulation model may well be worth the effort.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Clinical trials</subject><subject>Decision making</subject><subject>Disease control</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Medical screening</subject><subject>Methods</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Studies</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjUtPwzAQhC0EEqVw5mpxD9i7ceJwq6rykCpxgXO1ddY0VRIX2_n_pILLfNKMZkaIe60etQJ8Wj3PgAYAVAlNcyEW2tRQNIj2UiwUmLIwiOpa3KR0VEppbc1C9JuUu4FyN37LE0UaOHNMMnhJcuhcDKkbpn7OwyiH0HIvfYhyH5lSlo5Gx1EmF5nH88KUzpoPPHshsvTT6P6qnA-hvRVXnvrEd_9ciq-Xzef6rdh-vL6vV9vCAVS5sA4JrPLWg0Pv2GijVG0Bfdtgya2q0Bm7B-LKtkhNQ6CJ0LQVea5rjUvx8Ld7iuFn4pR3xzDFcb7cgS7N3Fcl_gKMPVvt</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Sita Y G L Tan</creator><creator>van Oortmarssen, Gerrit J</creator><creator>Piersma, Nanda</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030301</creationdate><title>Estimating parameters of a microsimulation model for breast cancer screening using the score function method</title><author>Sita Y G L Tan ; van Oortmarssen, Gerrit J ; Piersma, Nanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-8c3a280f8f2c3fce515007823fd934ed063c58b2ae68d3a99a21aa35d6afe7713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Clinical trials</topic><topic>Decision making</topic><topic>Disease control</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Medical screening</topic><topic>Methods</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sita Y G L Tan</creatorcontrib><creatorcontrib>van Oortmarssen, Gerrit J</creatorcontrib><creatorcontrib>Piersma, Nanda</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sita Y G L Tan</au><au>van Oortmarssen, Gerrit J</au><au>Piersma, Nanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating parameters of a microsimulation model for breast cancer screening using the score function method</atitle><jtitle>Annals of operations research</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>119</volume><issue>1</issue><spage>43</spage><pages>43-</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>In developing decision-making models for the evaluation of medical procedures, the model parameters can be estimated by fitting the model to data observed in (randomized) trials. For complex models that are implemented by discrete event simulation (microsimulation) of individual life histories, the Score Function (SF) method can potentially be an appropriate approach for such estimation exercises. We test this approach for a microsimulation model for breast cancer screening that is fitted to data from the HIP randomized trial for early detection of breast cancer. Comparison of the parameter values estimated using the SF method and the analytical solution shows that method performs well on this simple model. The precision of the estimated parameter values depends (as expected) on the size of the sample of simulated life histories, and on the number of parameters estimated. Using analytical representations for parts of the microsimulation model can increase the precision of the estimated parameter values. Compared to the Nelder and Mead Simplex method which is often used in stochastic simulation because of its ease of implementation, the SF method is clearly more efficient (ratio computer time: precision of estimates). The additional analytical investment needed to implement the SF method in an (existing) simulation model may well be worth the effort.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1022922204299</doi></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2003-03, Vol.119 (1), p.43
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_214506304
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Approximation
Breast cancer
Cancer
Clinical trials
Decision making
Disease control
Epidemiology
Estimates
Medical screening
Methods
Operations research
Optimization
Simulation
Studies
title Estimating parameters of a microsimulation model for breast cancer screening using the score function method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20parameters%20of%20a%20microsimulation%20model%20for%20breast%20cancer%20screening%20using%20the%20score%20function%20method&rft.jtitle=Annals%20of%20operations%20research&rft.au=Sita%20Y%20G%20L%20Tan&rft.date=2003-03-01&rft.volume=119&rft.issue=1&rft.spage=43&rft.pages=43-&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1023/A:1022922204299&rft_dat=%3Cproquest%3E405388721%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214506304&rft_id=info:pmid/&rfr_iscdi=true