Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems
The paper describes new results in the field of multiobjective optimization techniques. The Interactive Decision Maps (IDM) technique is based on approximation of Feasible Criterion Set (FCS) and subsequent visualization of the Pareto frontier of FCS by interactive displaying the bi-criteria slices...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2009-02, Vol.166 (1), p.271-279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 1 |
container_start_page | 271 |
container_title | Annals of operations research |
container_volume | 166 |
creator | Efremov, Roman V. Kamenev, Georgy K. |
description | The paper describes new results in the field of multiobjective optimization techniques. The Interactive Decision Maps (IDM) technique is based on approximation of Feasible Criterion Set (FCS) and subsequent visualization of the Pareto frontier of FCS by interactive displaying the bi-criteria slices of FCS. The Estimation Refinement (ER) method is now the main method for approximating convex FCS in the framework of IDM. The properties of the ER method are studied. We prove that the number of facets of the approximation constructed by ER and the number of the support function calculations of an approximated set are asymptotically optimal. These results are important from the point of view of real-life applications of ER. |
doi_str_mv | 10.1007/s10479-008-0418-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214504452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1625704841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-5573c7b8df21f772396aa2e310c8ef49a1cc6ba0ab14a2add09a46bdb33fe0303</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAews9oHxI02yRBUvqRIsYG05zpimSuNgu1XzN3xLvwxXRWLFahZzzh3NJeSawS0DKO4CA1lUGUCZgWRlNp6QCcsLnlVClKdkAjyXWS4EnJOLEFYAwFiZT8jmzbsBfWwxUGeppmuMS9dQ6zwdXDcusfG6o3oYvNu1ax1b1ydw_x2XuP-2qENbd0iNbyP6wy5gpG1Pjeu3uKPrTZeMeoUmtlukKSTR63BJzqzuAl79zin5eHx4nz9ni9enl_n9IjNCzmKW54UwRV02ljNbFFxUM605CgamRCsrzYyZ1Rp0zaTmummg0nJWN7UQFkGAmJKbY246_LXBENXKbXyfTirOZA5S5jxB7AgZ70LwaNXg06d-VAzUoVx1LFelctWhXDUmhx-dkNj-E_1f8P_SD-77ghc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214504452</pqid></control><display><type>article</type><title>Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems</title><source>SpringerNature Complete Journals</source><source>EBSCOhost Business Source Complete</source><creator>Efremov, Roman V. ; Kamenev, Georgy K.</creator><creatorcontrib>Efremov, Roman V. ; Kamenev, Georgy K.</creatorcontrib><description>The paper describes new results in the field of multiobjective optimization techniques. The Interactive Decision Maps (IDM) technique is based on approximation of Feasible Criterion Set (FCS) and subsequent visualization of the Pareto frontier of FCS by interactive displaying the bi-criteria slices of FCS. The Estimation Refinement (ER) method is now the main method for approximating convex FCS in the framework of IDM. The properties of the ER method are studied. We prove that the number of facets of the approximation constructed by ER and the number of the support function calculations of an approximated set are asymptotically optimal. These results are important from the point of view of real-life applications of ER.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-008-0418-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Business and Management ; Combinatorics ; Decision making models ; Estimating techniques ; Methods ; Operations research ; Operations Research/Decision Theory ; Optimization ; Optimization techniques ; Studies ; Theory of Computation</subject><ispartof>Annals of operations research, 2009-02, Vol.166 (1), p.271-279</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-5573c7b8df21f772396aa2e310c8ef49a1cc6ba0ab14a2add09a46bdb33fe0303</citedby><cites>FETCH-LOGICAL-c346t-5573c7b8df21f772396aa2e310c8ef49a1cc6ba0ab14a2add09a46bdb33fe0303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-008-0418-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-008-0418-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Efremov, Roman V.</creatorcontrib><creatorcontrib>Kamenev, Georgy K.</creatorcontrib><title>Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>The paper describes new results in the field of multiobjective optimization techniques. The Interactive Decision Maps (IDM) technique is based on approximation of Feasible Criterion Set (FCS) and subsequent visualization of the Pareto frontier of FCS by interactive displaying the bi-criteria slices of FCS. The Estimation Refinement (ER) method is now the main method for approximating convex FCS in the framework of IDM. The properties of the ER method are studied. We prove that the number of facets of the approximation constructed by ER and the number of the support function calculations of an approximated set are asymptotically optimal. These results are important from the point of view of real-life applications of ER.</description><subject>Approximation</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Decision making models</subject><subject>Estimating techniques</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAews9oHxI02yRBUvqRIsYG05zpimSuNgu1XzN3xLvwxXRWLFahZzzh3NJeSawS0DKO4CA1lUGUCZgWRlNp6QCcsLnlVClKdkAjyXWS4EnJOLEFYAwFiZT8jmzbsBfWwxUGeppmuMS9dQ6zwdXDcusfG6o3oYvNu1ax1b1ydw_x2XuP-2qENbd0iNbyP6wy5gpG1Pjeu3uKPrTZeMeoUmtlukKSTR63BJzqzuAl79zin5eHx4nz9ni9enl_n9IjNCzmKW54UwRV02ljNbFFxUM605CgamRCsrzYyZ1Rp0zaTmummg0nJWN7UQFkGAmJKbY246_LXBENXKbXyfTirOZA5S5jxB7AgZ70LwaNXg06d-VAzUoVx1LFelctWhXDUmhx-dkNj-E_1f8P_SD-77ghc</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Efremov, Roman V.</creator><creator>Kamenev, Georgy K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090201</creationdate><title>Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems</title><author>Efremov, Roman V. ; Kamenev, Georgy K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-5573c7b8df21f772396aa2e310c8ef49a1cc6ba0ab14a2add09a46bdb33fe0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Decision making models</topic><topic>Estimating techniques</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efremov, Roman V.</creatorcontrib><creatorcontrib>Kamenev, Georgy K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efremov, Roman V.</au><au>Kamenev, Georgy K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>166</volume><issue>1</issue><spage>271</spage><epage>279</epage><pages>271-279</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>The paper describes new results in the field of multiobjective optimization techniques. The Interactive Decision Maps (IDM) technique is based on approximation of Feasible Criterion Set (FCS) and subsequent visualization of the Pareto frontier of FCS by interactive displaying the bi-criteria slices of FCS. The Estimation Refinement (ER) method is now the main method for approximating convex FCS in the framework of IDM. The properties of the ER method are studied. We prove that the number of facets of the approximation constructed by ER and the number of the support function calculations of an approximated set are asymptotically optimal. These results are important from the point of view of real-life applications of ER.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10479-008-0418-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2009-02, Vol.166 (1), p.271-279 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_214504452 |
source | SpringerNature Complete Journals; EBSCOhost Business Source Complete |
subjects | Approximation Business and Management Combinatorics Decision making models Estimating techniques Methods Operations research Operations Research/Decision Theory Optimization Optimization techniques Studies Theory of Computation |
title | Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20a%20method%20for%20polyhedral%20approximation%20of%C2%A0the%C2%A0feasible%20criterion%20set%20in%20convex%20multiobjective%20problems&rft.jtitle=Annals%20of%20operations%20research&rft.au=Efremov,%20Roman%20V.&rft.date=2009-02-01&rft.volume=166&rft.issue=1&rft.spage=271&rft.epage=279&rft.pages=271-279&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-008-0418-y&rft_dat=%3Cproquest_cross%3E1625704841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214504452&rft_id=info:pmid/&rfr_iscdi=true |