On numerical calculation of probabilities according to Dirichlet distribution

The main difficulty in numerical solution of probabilistic constrained stochastic programming problems is the calculation of the probability values according to the underlying multivariate probability distribution. In addition, when we are using a nonlinear programming algorithm for the solution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2010-06, Vol.177 (1), p.185-200
Hauptverfasser: Gouda, Ashraf A., Szántai, Tamás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 1
container_start_page 185
container_title Annals of operations research
container_volume 177
creator Gouda, Ashraf A.
Szántai, Tamás
description The main difficulty in numerical solution of probabilistic constrained stochastic programming problems is the calculation of the probability values according to the underlying multivariate probability distribution. In addition, when we are using a nonlinear programming algorithm for the solution of the problem, the calculation of the first and second order partial derivatives may also be necessary. In this paper we give solutions to the above problems in the case of Dirichlet distribution. For the calculation of the cumulative distribution function values, the Lauricella function series expansions will be applied up to 7 dimensions. For higher dimensions we propose the hypermultitree bound calculations and a variance reduction simulation procedure based on these bounds. There will be given formulae for the calculation of the first and second order partial derivatives, too. The common property of these formulae is that they involve only lower dimensional cumulative distribution function calculations. Numerical test results will also be presented.
doi_str_mv 10.1007/s10479-009-0601-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_214503715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A329182381</galeid><sourcerecordid>A329182381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-feaa7109138046ee348d17afa3e7d71ea3fe4766bdbdf82cdc263f140201594a3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQRi0EEpfCA7CL6LYpM3YSJ8uqP4BU0Q2sLccZp65y7WI7i74Nz8KT1VdBopWKrLEl65wZWx9jHxFOEUB-TgiNHGqAUh1gPbxiO2wlrwch-tdsB7xt6lYIeMvepXQHAIh9u2Pfb3zl1z1FZ_RSlTLrorMLvgq2uo9h1KNbXHaUKm1MiJPzc5XDn98Xrii3C-VqcilHN64H6z17Y_WS6MPf84j9vLr8cf61vr758u387Lo2TQu5tqS1RBhQ9NB0RKLpJ5TaakFykkhaWGpk143TONmem8nwTlhsgAO2Q6PFEfu09S1P_LVSyuourNGXkYpjGSEktgU63qBZL6SctyFHbfYuGXUm-IA9Fz0W6vQFqqyJ9s4ET9aV-2fCyRNhXJPzlMqW3Hyb06zXlJ7juOEmhpQiWXUf3V7HB4WgDtmpLTtVslOH7NRQHL45qbB-pvjve_-XHgHoXpvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214503715</pqid></control><display><type>article</type><title>On numerical calculation of probabilities according to Dirichlet distribution</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Gouda, Ashraf A. ; Szántai, Tamás</creator><creatorcontrib>Gouda, Ashraf A. ; Szántai, Tamás</creatorcontrib><description>The main difficulty in numerical solution of probabilistic constrained stochastic programming problems is the calculation of the probability values according to the underlying multivariate probability distribution. In addition, when we are using a nonlinear programming algorithm for the solution of the problem, the calculation of the first and second order partial derivatives may also be necessary. In this paper we give solutions to the above problems in the case of Dirichlet distribution. For the calculation of the cumulative distribution function values, the Lauricella function series expansions will be applied up to 7 dimensions. For higher dimensions we propose the hypermultitree bound calculations and a variance reduction simulation procedure based on these bounds. There will be given formulae for the calculation of the first and second order partial derivatives, too. The common property of these formulae is that they involve only lower dimensional cumulative distribution function calculations. Numerical test results will also be presented.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-009-0601-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Business and Management ; Combinatorics ; Consumers ; Life cycles ; Monte Carlo method ; Monte Carlo simulation ; Nonlinear programming ; Operations research ; Operations Research/Decision Theory ; Probability ; Probability distribution ; Random variables ; Studies ; Theory of Computation</subject><ispartof>Annals of operations research, 2010-06, Vol.177 (1), p.185-200</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-feaa7109138046ee348d17afa3e7d71ea3fe4766bdbdf82cdc263f140201594a3</citedby><cites>FETCH-LOGICAL-c450t-feaa7109138046ee348d17afa3e7d71ea3fe4766bdbdf82cdc263f140201594a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-009-0601-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-009-0601-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gouda, Ashraf A.</creatorcontrib><creatorcontrib>Szántai, Tamás</creatorcontrib><title>On numerical calculation of probabilities according to Dirichlet distribution</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>The main difficulty in numerical solution of probabilistic constrained stochastic programming problems is the calculation of the probability values according to the underlying multivariate probability distribution. In addition, when we are using a nonlinear programming algorithm for the solution of the problem, the calculation of the first and second order partial derivatives may also be necessary. In this paper we give solutions to the above problems in the case of Dirichlet distribution. For the calculation of the cumulative distribution function values, the Lauricella function series expansions will be applied up to 7 dimensions. For higher dimensions we propose the hypermultitree bound calculations and a variance reduction simulation procedure based on these bounds. There will be given formulae for the calculation of the first and second order partial derivatives, too. The common property of these formulae is that they involve only lower dimensional cumulative distribution function calculations. Numerical test results will also be presented.</description><subject>Algorithms</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Consumers</subject><subject>Life cycles</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear programming</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1TAQRi0EEpfCA7CL6LYpM3YSJ8uqP4BU0Q2sLccZp65y7WI7i74Nz8KT1VdBopWKrLEl65wZWx9jHxFOEUB-TgiNHGqAUh1gPbxiO2wlrwch-tdsB7xt6lYIeMvepXQHAIh9u2Pfb3zl1z1FZ_RSlTLrorMLvgq2uo9h1KNbXHaUKm1MiJPzc5XDn98Xrii3C-VqcilHN64H6z17Y_WS6MPf84j9vLr8cf61vr758u387Lo2TQu5tqS1RBhQ9NB0RKLpJ5TaakFykkhaWGpk143TONmem8nwTlhsgAO2Q6PFEfu09S1P_LVSyuourNGXkYpjGSEktgU63qBZL6SctyFHbfYuGXUm-IA9Fz0W6vQFqqyJ9s4ET9aV-2fCyRNhXJPzlMqW3Hyb06zXlJ7juOEmhpQiWXUf3V7HB4WgDtmpLTtVslOH7NRQHL45qbB-pvjve_-XHgHoXpvU</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Gouda, Ashraf A.</creator><creator>Szántai, Tamás</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100601</creationdate><title>On numerical calculation of probabilities according to Dirichlet distribution</title><author>Gouda, Ashraf A. ; Szántai, Tamás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-feaa7109138046ee348d17afa3e7d71ea3fe4766bdbdf82cdc263f140201594a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Consumers</topic><topic>Life cycles</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear programming</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouda, Ashraf A.</creatorcontrib><creatorcontrib>Szántai, Tamás</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouda, Ashraf A.</au><au>Szántai, Tamás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On numerical calculation of probabilities according to Dirichlet distribution</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>177</volume><issue>1</issue><spage>185</spage><epage>200</epage><pages>185-200</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>The main difficulty in numerical solution of probabilistic constrained stochastic programming problems is the calculation of the probability values according to the underlying multivariate probability distribution. In addition, when we are using a nonlinear programming algorithm for the solution of the problem, the calculation of the first and second order partial derivatives may also be necessary. In this paper we give solutions to the above problems in the case of Dirichlet distribution. For the calculation of the cumulative distribution function values, the Lauricella function series expansions will be applied up to 7 dimensions. For higher dimensions we propose the hypermultitree bound calculations and a variance reduction simulation procedure based on these bounds. There will be given formulae for the calculation of the first and second order partial derivatives, too. The common property of these formulae is that they involve only lower dimensional cumulative distribution function calculations. Numerical test results will also be presented.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10479-009-0601-9</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2010-06, Vol.177 (1), p.185-200
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_214503715
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Algorithms
Business and Management
Combinatorics
Consumers
Life cycles
Monte Carlo method
Monte Carlo simulation
Nonlinear programming
Operations research
Operations Research/Decision Theory
Probability
Probability distribution
Random variables
Studies
Theory of Computation
title On numerical calculation of probabilities according to Dirichlet distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20numerical%20calculation%20of%20probabilities%20according%20to%C2%A0Dirichlet%20distribution&rft.jtitle=Annals%20of%20operations%20research&rft.au=Gouda,%20Ashraf%20A.&rft.date=2010-06-01&rft.volume=177&rft.issue=1&rft.spage=185&rft.epage=200&rft.pages=185-200&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-009-0601-9&rft_dat=%3Cgale_proqu%3EA329182381%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214503715&rft_id=info:pmid/&rft_galeid=A329182381&rfr_iscdi=true