Learning and pricing in an internet environment with binomial demands
This paper considers the problem of setting prices dynamically to maximise expected revenues in a finite horizon model in which the demand parameters are shown. At each decision epoch, the manager chooses a price and observes a binary response (buy or not) for each consumer visiting the website duri...
Gespeichert in:
Veröffentlicht in: | Journal of revenue and pricing management 2005-01, Vol.3 (4), p.320-336 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 4 |
container_start_page | 320 |
container_title | Journal of revenue and pricing management |
container_volume | 3 |
creator | Carvalho, Alexandre X Puterman, Martin L |
description | This paper considers the problem of setting prices dynamically to maximise expected revenues in a finite horizon model in which the demand parameters are shown. At each decision epoch, the manager chooses a price and observes a binary response (buy or not) for each consumer visiting the website during that period. This paper focuses on comparing several easy to implement good pricing policies. A Taylor series expansion of the future reward function explicitly illustrates the trade-off between short-term revenue maximisation and future information gains and suggests a pricing policy referred to as a one-step look ahead rule. A Monte Carlo study compares several different pricing strategies and shows that the one-step look ahead rule dominates other policies and produces good short term performance. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1057/palgrave.rpm.5170118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214492344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>797660601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-fcf6ce9e81921ea0130164fc6842ee588a196be041542198e1ff41b4e4dd3f043</originalsourceid><addsrcrecordid>eNo1kE9PwzAMxSMEEmPwDThU3Dvi1E3TI5rGH2kSF5C4RVnrjExtWpJuiG9Py8bFfpae_eQfY7fAF8Dz4r43zTaYAy1C3y5yKDiAOmMzwKJIZV58nP9pmcoy45fsKsYd50JILGZstSYTvPPbxPg66YOrJu38OI51oOBpSMgfXOh8S35Ivt3wmWyc71pnmqSmdtyL1-zCmibSzanP2fvj6m35nK5fn16WD-u0ElwNqa2srKgkBaUAMhwyDhJtJRUKolwpA6XcEEfIUUCpCKxF2CBhXWeWYzZnd8e7fei-9hQHvev2wY-RWgBiKTKcTHg0VaGLMZDV41utCT8auJ546X9eeuSlT7yyXwRBYfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214492344</pqid></control><display><type>article</type><title>Learning and pricing in an internet environment with binomial demands</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Carvalho, Alexandre X ; Puterman, Martin L</creator><creatorcontrib>Carvalho, Alexandre X ; Puterman, Martin L</creatorcontrib><description>This paper considers the problem of setting prices dynamically to maximise expected revenues in a finite horizon model in which the demand parameters are shown. At each decision epoch, the manager chooses a price and observes a binary response (buy or not) for each consumer visiting the website during that period. This paper focuses on comparing several easy to implement good pricing policies. A Taylor series expansion of the future reward function explicitly illustrates the trade-off between short-term revenue maximisation and future information gains and suggests a pricing policy referred to as a one-step look ahead rule. A Monte Carlo study compares several different pricing strategies and shows that the one-step look ahead rule dominates other policies and produces good short term performance. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1476-6930</identifier><identifier>EISSN: 1477-657X</identifier><identifier>DOI: 10.1057/palgrave.rpm.5170118</identifier><language>eng</language><publisher>London: Palgrave Macmillan</publisher><subject>Monte Carlo simulation ; Organizational learning ; Pricing policies ; Regression analysis ; Studies ; Websites</subject><ispartof>Journal of revenue and pricing management, 2005-01, Vol.3 (4), p.320-336</ispartof><rights>Copyright Henry Stewart Conferences and Publications Ltd. Jan 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-fcf6ce9e81921ea0130164fc6842ee588a196be041542198e1ff41b4e4dd3f043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Carvalho, Alexandre X</creatorcontrib><creatorcontrib>Puterman, Martin L</creatorcontrib><title>Learning and pricing in an internet environment with binomial demands</title><title>Journal of revenue and pricing management</title><description>This paper considers the problem of setting prices dynamically to maximise expected revenues in a finite horizon model in which the demand parameters are shown. At each decision epoch, the manager chooses a price and observes a binary response (buy or not) for each consumer visiting the website during that period. This paper focuses on comparing several easy to implement good pricing policies. A Taylor series expansion of the future reward function explicitly illustrates the trade-off between short-term revenue maximisation and future information gains and suggests a pricing policy referred to as a one-step look ahead rule. A Monte Carlo study compares several different pricing strategies and shows that the one-step look ahead rule dominates other policies and produces good short term performance. [PUBLICATION ABSTRACT]</description><subject>Monte Carlo simulation</subject><subject>Organizational learning</subject><subject>Pricing policies</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Websites</subject><issn>1476-6930</issn><issn>1477-657X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo1kE9PwzAMxSMEEmPwDThU3Dvi1E3TI5rGH2kSF5C4RVnrjExtWpJuiG9Py8bFfpae_eQfY7fAF8Dz4r43zTaYAy1C3y5yKDiAOmMzwKJIZV58nP9pmcoy45fsKsYd50JILGZstSYTvPPbxPg66YOrJu38OI51oOBpSMgfXOh8S35Ivt3wmWyc71pnmqSmdtyL1-zCmibSzanP2fvj6m35nK5fn16WD-u0ElwNqa2srKgkBaUAMhwyDhJtJRUKolwpA6XcEEfIUUCpCKxF2CBhXWeWYzZnd8e7fei-9hQHvev2wY-RWgBiKTKcTHg0VaGLMZDV41utCT8auJ546X9eeuSlT7yyXwRBYfQ</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Carvalho, Alexandre X</creator><creator>Puterman, Martin L</creator><general>Palgrave Macmillan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>8A9</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200501</creationdate><title>Learning and pricing in an internet environment with binomial demands</title><author>Carvalho, Alexandre X ; Puterman, Martin L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-fcf6ce9e81921ea0130164fc6842ee588a196be041542198e1ff41b4e4dd3f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Monte Carlo simulation</topic><topic>Organizational learning</topic><topic>Pricing policies</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Alexandre X</creatorcontrib><creatorcontrib>Puterman, Martin L</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting & Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Accounting & Tax Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax & Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Accounting, Tax & Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of revenue and pricing management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Alexandre X</au><au>Puterman, Martin L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning and pricing in an internet environment with binomial demands</atitle><jtitle>Journal of revenue and pricing management</jtitle><date>2005-01</date><risdate>2005</risdate><volume>3</volume><issue>4</issue><spage>320</spage><epage>336</epage><pages>320-336</pages><issn>1476-6930</issn><eissn>1477-657X</eissn><abstract>This paper considers the problem of setting prices dynamically to maximise expected revenues in a finite horizon model in which the demand parameters are shown. At each decision epoch, the manager chooses a price and observes a binary response (buy or not) for each consumer visiting the website during that period. This paper focuses on comparing several easy to implement good pricing policies. A Taylor series expansion of the future reward function explicitly illustrates the trade-off between short-term revenue maximisation and future information gains and suggests a pricing policy referred to as a one-step look ahead rule. A Monte Carlo study compares several different pricing strategies and shows that the one-step look ahead rule dominates other policies and produces good short term performance. [PUBLICATION ABSTRACT]</abstract><cop>London</cop><pub>Palgrave Macmillan</pub><doi>10.1057/palgrave.rpm.5170118</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-6930 |
ispartof | Journal of revenue and pricing management, 2005-01, Vol.3 (4), p.320-336 |
issn | 1476-6930 1477-657X |
language | eng |
recordid | cdi_proquest_journals_214492344 |
source | SpringerLink Journals; Business Source Complete |
subjects | Monte Carlo simulation Organizational learning Pricing policies Regression analysis Studies Websites |
title | Learning and pricing in an internet environment with binomial demands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20and%20pricing%20in%20an%20internet%20environment%20with%20binomial%20demands&rft.jtitle=Journal%20of%20revenue%20and%20pricing%20management&rft.au=Carvalho,%20Alexandre%20X&rft.date=2005-01&rft.volume=3&rft.issue=4&rft.spage=320&rft.epage=336&rft.pages=320-336&rft.issn=1476-6930&rft.eissn=1477-657X&rft_id=info:doi/10.1057/palgrave.rpm.5170118&rft_dat=%3Cproquest_cross%3E797660601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214492344&rft_id=info:pmid/&rfr_iscdi=true |