Multi-scaling in finance
The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling proces...
Gespeichert in:
Veröffentlicht in: | Quantitative finance 2007-02, Vol.7 (1), p.21-36 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Quantitative finance |
container_volume | 7 |
creator | Di Matteo, T. |
description | The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling processes are given. Methods to estimate such exponents from empirical financial data are reviewed. A detailed description of the Generalized Hurst exponent approach is presented and substantiated with an empirical analysis across different markets and assets. |
doi_str_mv | 10.1080/14697680600969727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_journals_214480015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1211978561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-77b54f099988c69e87a8554bc5adf48fbf36a5840479e68d5c4909f4e109c21e3</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrd71VryvvuzmE7yIaBUqXvQc0jTRlO1um2TV_nuzrPRSxMOQ4TEz700QusBwhUHANSZMciaAAcjMSn6ARv2s4Eyywx0X4hidxLgEwDQrR-j8uauTL6LRtW_eJ76ZON_oxthTdOR0He3Z7ztGbw_3r3ePxexl-nR3OysMxTgVnM8pcSClFMIwaQXXglIyN1QvHBFu7iqmqSBAuLRMLKghEqQjFoM0JbbVGF0OuevQbjobk1q2XWjySlViQkR_aRbhQWRCG2OwTq2DX-mwVRhU31_t9c-e6eAJdm3NzpC023S6SU59qkrzjG1GCdBTn4Ez1v0oE6Y-0ion8SHJN64NK_3VhnqRg7Z1G1zIn-Xj_n6VvlN23vzrrP6u8APcBIh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214480015</pqid></control><display><type>article</type><title>Multi-scaling in finance</title><source>RePEc</source><source>Business Source Complete</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Di Matteo, T.</creator><creatorcontrib>Di Matteo, T.</creatorcontrib><description>The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling processes are given. Methods to estimate such exponents from empirical financial data are reviewed. A detailed description of the Generalized Hurst exponent approach is presented and substantiated with an empirical analysis across different markets and assets.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697680600969727</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Econophysics ; Estimating techniques ; Financial analysis ; Multifractal formalisms ; Scaling ; Studies ; Time series ; Time series analysis</subject><ispartof>Quantitative finance, 2007-02, Vol.7 (1), p.21-36</ispartof><rights>Copyright Taylor & Francis Group, LLC 2007</rights><rights>Copyright American Institute of Physics Feb 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-77b54f099988c69e87a8554bc5adf48fbf36a5840479e68d5c4909f4e109c21e3</citedby><cites>FETCH-LOGICAL-c511t-77b54f099988c69e87a8554bc5adf48fbf36a5840479e68d5c4909f4e109c21e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697680600969727$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697680600969727$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>315,781,785,4009,27929,27930,59652,60441</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafquantf/v_3a7_3ay_3a2007_3ai_3a1_3ap_3a21-36.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Matteo, T.</creatorcontrib><title>Multi-scaling in finance</title><title>Quantitative finance</title><description>The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling processes are given. Methods to estimate such exponents from empirical financial data are reviewed. A detailed description of the Generalized Hurst exponent approach is presented and substantiated with an empirical analysis across different markets and assets.</description><subject>Econophysics</subject><subject>Estimating techniques</subject><subject>Financial analysis</subject><subject>Multifractal formalisms</subject><subject>Scaling</subject><subject>Studies</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1LAzEUDKJgrd71VryvvuzmE7yIaBUqXvQc0jTRlO1um2TV_nuzrPRSxMOQ4TEz700QusBwhUHANSZMciaAAcjMSn6ARv2s4Eyywx0X4hidxLgEwDQrR-j8uauTL6LRtW_eJ76ZON_oxthTdOR0He3Z7ztGbw_3r3ePxexl-nR3OysMxTgVnM8pcSClFMIwaQXXglIyN1QvHBFu7iqmqSBAuLRMLKghEqQjFoM0JbbVGF0OuevQbjobk1q2XWjySlViQkR_aRbhQWRCG2OwTq2DX-mwVRhU31_t9c-e6eAJdm3NzpC023S6SU59qkrzjG1GCdBTn4Ez1v0oE6Y-0ion8SHJN64NK_3VhnqRg7Z1G1zIn-Xj_n6VvlN23vzrrP6u8APcBIh0</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Di Matteo, T.</creator><general>Routledge</general><general>Taylor and Francis Journals</general><general>Taylor & Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070201</creationdate><title>Multi-scaling in finance</title><author>Di Matteo, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-77b54f099988c69e87a8554bc5adf48fbf36a5840479e68d5c4909f4e109c21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Econophysics</topic><topic>Estimating techniques</topic><topic>Financial analysis</topic><topic>Multifractal formalisms</topic><topic>Scaling</topic><topic>Studies</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Matteo, T.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Matteo, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scaling in finance</atitle><jtitle>Quantitative finance</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>7</volume><issue>1</issue><spage>21</spage><epage>36</epage><pages>21-36</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling processes are given. Methods to estimate such exponents from empirical financial data are reviewed. A detailed description of the Generalized Hurst exponent approach is presented and substantiated with an empirical analysis across different markets and assets.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697680600969727</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-7688 |
ispartof | Quantitative finance, 2007-02, Vol.7 (1), p.21-36 |
issn | 1469-7688 1469-7696 |
language | eng |
recordid | cdi_proquest_journals_214480015 |
source | RePEc; Business Source Complete; Taylor & Francis:Master (3349 titles) |
subjects | Econophysics Estimating techniques Financial analysis Multifractal formalisms Scaling Studies Time series Time series analysis |
title | Multi-scaling in finance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scaling%20in%20finance&rft.jtitle=Quantitative%20finance&rft.au=Di%20Matteo,%20T.&rft.date=2007-02-01&rft.volume=7&rft.issue=1&rft.spage=21&rft.epage=36&rft.pages=21-36&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697680600969727&rft_dat=%3Cproquest_repec%3E1211978561%3C/proquest_repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214480015&rft_id=info:pmid/&rfr_iscdi=true |