Multi-scaling in finance

The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2007-02, Vol.7 (1), p.21-36
1. Verfasser: Di Matteo, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 21
container_title Quantitative finance
container_volume 7
creator Di Matteo, T.
description The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling processes are given. Methods to estimate such exponents from empirical financial data are reviewed. A detailed description of the Generalized Hurst exponent approach is presented and substantiated with an empirical analysis across different markets and assets.
doi_str_mv 10.1080/14697680600969727
format Article
fullrecord <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_journals_214480015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1211978561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-77b54f099988c69e87a8554bc5adf48fbf36a5840479e68d5c4909f4e109c21e3</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrd71VryvvuzmE7yIaBUqXvQc0jTRlO1um2TV_nuzrPRSxMOQ4TEz700QusBwhUHANSZMciaAAcjMSn6ARv2s4Eyywx0X4hidxLgEwDQrR-j8uauTL6LRtW_eJ76ZON_oxthTdOR0He3Z7ztGbw_3r3ePxexl-nR3OysMxTgVnM8pcSClFMIwaQXXglIyN1QvHBFu7iqmqSBAuLRMLKghEqQjFoM0JbbVGF0OuevQbjobk1q2XWjySlViQkR_aRbhQWRCG2OwTq2DX-mwVRhU31_t9c-e6eAJdm3NzpC023S6SU59qkrzjG1GCdBTn4Ez1v0oE6Y-0ion8SHJN64NK_3VhnqRg7Z1G1zIn-Xj_n6VvlN23vzrrP6u8APcBIh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214480015</pqid></control><display><type>article</type><title>Multi-scaling in finance</title><source>RePEc</source><source>Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Di Matteo, T.</creator><creatorcontrib>Di Matteo, T.</creatorcontrib><description>The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling processes are given. Methods to estimate such exponents from empirical financial data are reviewed. A detailed description of the Generalized Hurst exponent approach is presented and substantiated with an empirical analysis across different markets and assets.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697680600969727</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Econophysics ; Estimating techniques ; Financial analysis ; Multifractal formalisms ; Scaling ; Studies ; Time series ; Time series analysis</subject><ispartof>Quantitative finance, 2007-02, Vol.7 (1), p.21-36</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2007</rights><rights>Copyright American Institute of Physics Feb 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-77b54f099988c69e87a8554bc5adf48fbf36a5840479e68d5c4909f4e109c21e3</citedby><cites>FETCH-LOGICAL-c511t-77b54f099988c69e87a8554bc5adf48fbf36a5840479e68d5c4909f4e109c21e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697680600969727$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697680600969727$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>315,781,785,4009,27929,27930,59652,60441</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafquantf/v_3a7_3ay_3a2007_3ai_3a1_3ap_3a21-36.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Matteo, T.</creatorcontrib><title>Multi-scaling in finance</title><title>Quantitative finance</title><description>The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling processes are given. Methods to estimate such exponents from empirical financial data are reviewed. A detailed description of the Generalized Hurst exponent approach is presented and substantiated with an empirical analysis across different markets and assets.</description><subject>Econophysics</subject><subject>Estimating techniques</subject><subject>Financial analysis</subject><subject>Multifractal formalisms</subject><subject>Scaling</subject><subject>Studies</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1LAzEUDKJgrd71VryvvuzmE7yIaBUqXvQc0jTRlO1um2TV_nuzrPRSxMOQ4TEz700QusBwhUHANSZMciaAAcjMSn6ARv2s4Eyywx0X4hidxLgEwDQrR-j8uauTL6LRtW_eJ76ZON_oxthTdOR0He3Z7ztGbw_3r3ePxexl-nR3OysMxTgVnM8pcSClFMIwaQXXglIyN1QvHBFu7iqmqSBAuLRMLKghEqQjFoM0JbbVGF0OuevQbjobk1q2XWjySlViQkR_aRbhQWRCG2OwTq2DX-mwVRhU31_t9c-e6eAJdm3NzpC023S6SU59qkrzjG1GCdBTn4Ez1v0oE6Y-0ion8SHJN64NK_3VhnqRg7Z1G1zIn-Xj_n6VvlN23vzrrP6u8APcBIh0</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Di Matteo, T.</creator><general>Routledge</general><general>Taylor and Francis Journals</general><general>Taylor &amp; Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070201</creationdate><title>Multi-scaling in finance</title><author>Di Matteo, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-77b54f099988c69e87a8554bc5adf48fbf36a5840479e68d5c4909f4e109c21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Econophysics</topic><topic>Estimating techniques</topic><topic>Financial analysis</topic><topic>Multifractal formalisms</topic><topic>Scaling</topic><topic>Studies</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Matteo, T.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Matteo, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scaling in finance</atitle><jtitle>Quantitative finance</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>7</volume><issue>1</issue><spage>21</spage><epage>36</epage><pages>21-36</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>The most suitable paradigms and tools for investigating the scaling structure of financial time series are reviewed and discussed in the light of some recent empirical results. Different types of scaling are distinguished and several definitions of scaling exponents, scaling and multi-scaling processes are given. Methods to estimate such exponents from empirical financial data are reviewed. A detailed description of the Generalized Hurst exponent approach is presented and substantiated with an empirical analysis across different markets and assets.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697680600969727</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2007-02, Vol.7 (1), p.21-36
issn 1469-7688
1469-7696
language eng
recordid cdi_proquest_journals_214480015
source RePEc; Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Econophysics
Estimating techniques
Financial analysis
Multifractal formalisms
Scaling
Studies
Time series
Time series analysis
title Multi-scaling in finance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scaling%20in%20finance&rft.jtitle=Quantitative%20finance&rft.au=Di%20Matteo,%20T.&rft.date=2007-02-01&rft.volume=7&rft.issue=1&rft.spage=21&rft.epage=36&rft.pages=21-36&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697680600969727&rft_dat=%3Cproquest_repec%3E1211978561%3C/proquest_repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214480015&rft_id=info:pmid/&rfr_iscdi=true