Hamiltonian ODEs in the Wasserstein space of probability measures
In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the c...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2008-01, Vol.61 (1), p.18-53 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | Communications on pure and applied mathematics |
container_volume | 61 |
creator | Ambrosio, Luigi Gangbo, Wilfrid |
description | In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the canonical symplectic matrix, μ0 is prescribed, and vt is a tangent vector to P2(R2d) at μt, belonging to ∂H(μt), the subdifferential of H at μt. Two methods for constructing solutions of the evolutive system are provided. The first one concerns only the case where μ0 is absolutely continuous. It ensures that μt remains absolutely continuous and vt = ∇H(μt) is the element of minimal norm in ∂H(μt). The second method handles any initial measure μ0. If we further assume that H is λ‐convex, proper, and lower‐semicontinuous on P2(R2d), we prove that the Hamiltonian is preserved along any solution of our evolutive system, H(μt) = H(μ0). © 2007 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.20188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214271550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1394691811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3998-d84c478f46b50ebbf270f588f6c3f2823cc3eb5838bc3b2ac0ee4310d05bba3</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhjdGExE9-A8aEw8eCrMfpdsjAQQNUaNGjpvdZTculrbulij_3mJRT54mkzzvM5MXoXMMPQxA-rqSPQKY8wPUwZClMVBMDlEHAENMBwyO0UkIq2bFjNMOGs7k2uV1WThZRPfjSYhcEdWvJlrIEIwPtWn2UEltotJGlS-VVC539TZaGxk23oRTdGRlHszZfnbR0_XkeTSL5_fTm9FwHmuaZTxecqZZyi0bqASMUpakYBPO7UBTSzihWlOjEk650lQRqcEYRjEsIVFK0i66aK3NC-8bE2qxKje-aA4KghlJcZJAA121kPZlCN5YUXm3ln4rMIhdPaKpR3zX07CXe6EMWubWy0K78BfIMmCE7Zz9lvtwudn-LxSjh-GPOW4Trmnv8zch_ZsYpDRNxOJuKniSjsnL7aNI6RflaIHO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214271550</pqid></control><display><type>article</type><title>Hamiltonian ODEs in the Wasserstein space of probability measures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ambrosio, Luigi ; Gangbo, Wilfrid</creator><creatorcontrib>Ambrosio, Luigi ; Gangbo, Wilfrid</creatorcontrib><description>In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the canonical symplectic matrix, μ0 is prescribed, and vt is a tangent vector to P2(R2d) at μt, belonging to ∂H(μt), the subdifferential of H at μt. Two methods for constructing solutions of the evolutive system are provided. The first one concerns only the case where μ0 is absolutely continuous. It ensures that μt remains absolutely continuous and vt = ∇H(μt) is the element of minimal norm in ∂H(μt). The second method handles any initial measure μ0. If we further assume that H is λ‐convex, proper, and lower‐semicontinuous on P2(R2d), we prove that the Hamiltonian is preserved along any solution of our evolutive system, H(μt) = H(μ0). © 2007 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20188</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Exact sciences and technology ; General topology ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Probability ; Sciences and techniques of general use ; Theory ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Communications on pure and applied mathematics, 2008-01, Vol.61 (1), p.18-53</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jan 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3998-d84c478f46b50ebbf270f588f6c3f2823cc3eb5838bc3b2ac0ee4310d05bba3</citedby><cites>FETCH-LOGICAL-c3998-d84c478f46b50ebbf270f588f6c3f2823cc3eb5838bc3b2ac0ee4310d05bba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.20188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.20188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4014,27914,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19904240$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambrosio, Luigi</creatorcontrib><creatorcontrib>Gangbo, Wilfrid</creatorcontrib><title>Hamiltonian ODEs in the Wasserstein space of probability measures</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the canonical symplectic matrix, μ0 is prescribed, and vt is a tangent vector to P2(R2d) at μt, belonging to ∂H(μt), the subdifferential of H at μt. Two methods for constructing solutions of the evolutive system are provided. The first one concerns only the case where μ0 is absolutely continuous. It ensures that μt remains absolutely continuous and vt = ∇H(μt) is the element of minimal norm in ∂H(μt). The second method handles any initial measure μ0. If we further assume that H is λ‐convex, proper, and lower‐semicontinuous on P2(R2d), we prove that the Hamiltonian is preserved along any solution of our evolutive system, H(μt) = H(μ0). © 2007 Wiley Periodicals, Inc.</description><subject>Exact sciences and technology</subject><subject>General topology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Probability</subject><subject>Sciences and techniques of general use</subject><subject>Theory</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwkAQhjdGExE9-A8aEw8eCrMfpdsjAQQNUaNGjpvdZTculrbulij_3mJRT54mkzzvM5MXoXMMPQxA-rqSPQKY8wPUwZClMVBMDlEHAENMBwyO0UkIq2bFjNMOGs7k2uV1WThZRPfjSYhcEdWvJlrIEIwPtWn2UEltotJGlS-VVC539TZaGxk23oRTdGRlHszZfnbR0_XkeTSL5_fTm9FwHmuaZTxecqZZyi0bqASMUpakYBPO7UBTSzihWlOjEk650lQRqcEYRjEsIVFK0i66aK3NC-8bE2qxKje-aA4KghlJcZJAA121kPZlCN5YUXm3ln4rMIhdPaKpR3zX07CXe6EMWubWy0K78BfIMmCE7Zz9lvtwudn-LxSjh-GPOW4Trmnv8zch_ZsYpDRNxOJuKniSjsnL7aNI6RflaIHO</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Ambrosio, Luigi</creator><creator>Gangbo, Wilfrid</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200801</creationdate><title>Hamiltonian ODEs in the Wasserstein space of probability measures</title><author>Ambrosio, Luigi ; Gangbo, Wilfrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3998-d84c478f46b50ebbf270f588f6c3f2823cc3eb5838bc3b2ac0ee4310d05bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>General topology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Probability</topic><topic>Sciences and techniques of general use</topic><topic>Theory</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrosio, Luigi</creatorcontrib><creatorcontrib>Gangbo, Wilfrid</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrosio, Luigi</au><au>Gangbo, Wilfrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian ODEs in the Wasserstein space of probability measures</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2008-01</date><risdate>2008</risdate><volume>61</volume><issue>1</issue><spage>18</spage><epage>53</epage><pages>18-53</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the canonical symplectic matrix, μ0 is prescribed, and vt is a tangent vector to P2(R2d) at μt, belonging to ∂H(μt), the subdifferential of H at μt. Two methods for constructing solutions of the evolutive system are provided. The first one concerns only the case where μ0 is absolutely continuous. It ensures that μt remains absolutely continuous and vt = ∇H(μt) is the element of minimal norm in ∂H(μt). The second method handles any initial measure μ0. If we further assume that H is λ‐convex, proper, and lower‐semicontinuous on P2(R2d), we prove that the Hamiltonian is preserved along any solution of our evolutive system, H(μt) = H(μ0). © 2007 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20188</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2008-01, Vol.61 (1), p.18-53 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_214271550 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Exact sciences and technology General topology Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Partial differential equations, initial value problems and time-dependant initial-boundary value problems Probability Sciences and techniques of general use Theory Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Hamiltonian ODEs in the Wasserstein space of probability measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20ODEs%20in%20the%20Wasserstein%20space%20of%20probability%20measures&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Ambrosio,%20Luigi&rft.date=2008-01&rft.volume=61&rft.issue=1&rft.spage=18&rft.epage=53&rft.pages=18-53&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20188&rft_dat=%3Cproquest_cross%3E1394691811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214271550&rft_id=info:pmid/&rfr_iscdi=true |