Hamiltonian ODEs in the Wasserstein space of probability measures

In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2008-01, Vol.61 (1), p.18-53
Hauptverfasser: Ambrosio, Luigi, Gangbo, Wilfrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 18
container_title Communications on pure and applied mathematics
container_volume 61
creator Ambrosio, Luigi
Gangbo, Wilfrid
description In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the canonical symplectic matrix, μ0 is prescribed, and vt is a tangent vector to P2(R2d) at μt, belonging to ∂H(μt), the subdifferential of H at μt. Two methods for constructing solutions of the evolutive system are provided. The first one concerns only the case where μ0 is absolutely continuous. It ensures that μt remains absolutely continuous and vt = ∇H(μt) is the element of minimal norm in ∂H(μt). The second method handles any initial measure μ0. If we further assume that H is λ‐convex, proper, and lower‐semicontinuous on P2(R2d), we prove that the Hamiltonian is preserved along any solution of our evolutive system, H(μt) = H(μ0). © 2007 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.20188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214271550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1394691811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3998-d84c478f46b50ebbf270f588f6c3f2823cc3eb5838bc3b2ac0ee4310d05bba3</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhjdGExE9-A8aEw8eCrMfpdsjAQQNUaNGjpvdZTculrbulij_3mJRT54mkzzvM5MXoXMMPQxA-rqSPQKY8wPUwZClMVBMDlEHAENMBwyO0UkIq2bFjNMOGs7k2uV1WThZRPfjSYhcEdWvJlrIEIwPtWn2UEltotJGlS-VVC539TZaGxk23oRTdGRlHszZfnbR0_XkeTSL5_fTm9FwHmuaZTxecqZZyi0bqASMUpakYBPO7UBTSzihWlOjEk650lQRqcEYRjEsIVFK0i66aK3NC-8bE2qxKje-aA4KghlJcZJAA121kPZlCN5YUXm3ln4rMIhdPaKpR3zX07CXe6EMWubWy0K78BfIMmCE7Zz9lvtwudn-LxSjh-GPOW4Trmnv8zch_ZsYpDRNxOJuKniSjsnL7aNI6RflaIHO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214271550</pqid></control><display><type>article</type><title>Hamiltonian ODEs in the Wasserstein space of probability measures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ambrosio, Luigi ; Gangbo, Wilfrid</creator><creatorcontrib>Ambrosio, Luigi ; Gangbo, Wilfrid</creatorcontrib><description>In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the canonical symplectic matrix, μ0 is prescribed, and vt is a tangent vector to P2(R2d) at μt, belonging to ∂H(μt), the subdifferential of H at μt. Two methods for constructing solutions of the evolutive system are provided. The first one concerns only the case where μ0 is absolutely continuous. It ensures that μt remains absolutely continuous and vt = ∇H(μt) is the element of minimal norm in ∂H(μt). The second method handles any initial measure μ0. If we further assume that H is λ‐convex, proper, and lower‐semicontinuous on P2(R2d), we prove that the Hamiltonian is preserved along any solution of our evolutive system, H(μt) = H(μ0). © 2007 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20188</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Exact sciences and technology ; General topology ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Probability ; Sciences and techniques of general use ; Theory ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Communications on pure and applied mathematics, 2008-01, Vol.61 (1), p.18-53</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jan 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3998-d84c478f46b50ebbf270f588f6c3f2823cc3eb5838bc3b2ac0ee4310d05bba3</citedby><cites>FETCH-LOGICAL-c3998-d84c478f46b50ebbf270f588f6c3f2823cc3eb5838bc3b2ac0ee4310d05bba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.20188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.20188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4014,27914,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19904240$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambrosio, Luigi</creatorcontrib><creatorcontrib>Gangbo, Wilfrid</creatorcontrib><title>Hamiltonian ODEs in the Wasserstein space of probability measures</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the canonical symplectic matrix, μ0 is prescribed, and vt is a tangent vector to P2(R2d) at μt, belonging to ∂H(μt), the subdifferential of H at μt. Two methods for constructing solutions of the evolutive system are provided. The first one concerns only the case where μ0 is absolutely continuous. It ensures that μt remains absolutely continuous and vt = ∇H(μt) is the element of minimal norm in ∂H(μt). The second method handles any initial measure μ0. If we further assume that H is λ‐convex, proper, and lower‐semicontinuous on P2(R2d), we prove that the Hamiltonian is preserved along any solution of our evolutive system, H(μt) = H(μ0). © 2007 Wiley Periodicals, Inc.</description><subject>Exact sciences and technology</subject><subject>General topology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Probability</subject><subject>Sciences and techniques of general use</subject><subject>Theory</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwkAQhjdGExE9-A8aEw8eCrMfpdsjAQQNUaNGjpvdZTculrbulij_3mJRT54mkzzvM5MXoXMMPQxA-rqSPQKY8wPUwZClMVBMDlEHAENMBwyO0UkIq2bFjNMOGs7k2uV1WThZRPfjSYhcEdWvJlrIEIwPtWn2UEltotJGlS-VVC539TZaGxk23oRTdGRlHszZfnbR0_XkeTSL5_fTm9FwHmuaZTxecqZZyi0bqASMUpakYBPO7UBTSzihWlOjEk650lQRqcEYRjEsIVFK0i66aK3NC-8bE2qxKje-aA4KghlJcZJAA121kPZlCN5YUXm3ln4rMIhdPaKpR3zX07CXe6EMWubWy0K78BfIMmCE7Zz9lvtwudn-LxSjh-GPOW4Trmnv8zch_ZsYpDRNxOJuKniSjsnL7aNI6RflaIHO</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Ambrosio, Luigi</creator><creator>Gangbo, Wilfrid</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200801</creationdate><title>Hamiltonian ODEs in the Wasserstein space of probability measures</title><author>Ambrosio, Luigi ; Gangbo, Wilfrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3998-d84c478f46b50ebbf270f588f6c3f2823cc3eb5838bc3b2ac0ee4310d05bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>General topology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Probability</topic><topic>Sciences and techniques of general use</topic><topic>Theory</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrosio, Luigi</creatorcontrib><creatorcontrib>Gangbo, Wilfrid</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrosio, Luigi</au><au>Gangbo, Wilfrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian ODEs in the Wasserstein space of probability measures</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2008-01</date><risdate>2008</risdate><volume>61</volume><issue>1</issue><spage>18</spage><epage>53</epage><pages>18-53</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>In this paper we consider a Hamiltonian H on P2(R2d), the set of probability measures with finite quadratic moments on the phase space R2d = Rd × Rd, which is a metric space when endowed with the Wasserstein distance W2. We study the initial value problem dμt/dt + ∇ · (Jdvtμt) = 0, where Jd is the canonical symplectic matrix, μ0 is prescribed, and vt is a tangent vector to P2(R2d) at μt, belonging to ∂H(μt), the subdifferential of H at μt. Two methods for constructing solutions of the evolutive system are provided. The first one concerns only the case where μ0 is absolutely continuous. It ensures that μt remains absolutely continuous and vt = ∇H(μt) is the element of minimal norm in ∂H(μt). The second method handles any initial measure μ0. If we further assume that H is λ‐convex, proper, and lower‐semicontinuous on P2(R2d), we prove that the Hamiltonian is preserved along any solution of our evolutive system, H(μt) = H(μ0). © 2007 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20188</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2008-01, Vol.61 (1), p.18-53
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_214271550
source Wiley Online Library Journals Frontfile Complete
subjects Exact sciences and technology
General topology
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Probability
Sciences and techniques of general use
Theory
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Hamiltonian ODEs in the Wasserstein space of probability measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20ODEs%20in%20the%20Wasserstein%20space%20of%20probability%20measures&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Ambrosio,%20Luigi&rft.date=2008-01&rft.volume=61&rft.issue=1&rft.spage=18&rft.epage=53&rft.pages=18-53&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20188&rft_dat=%3Cproquest_cross%3E1394691811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214271550&rft_id=info:pmid/&rfr_iscdi=true