Stability properties of steady water waves with vorticity

We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2007-06, Vol.60 (6), p.911-950
Hauptverfasser: Constantin, Adrian, Strauss, Walter A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 950
container_issue 6
container_start_page 911
container_title Communications on pure and applied mathematics
container_volume 60
creator Constantin, Adrian
Strauss, Walter A.
description We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.20165
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214270704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1267717731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-318ba4885984638a97aba87edf8ddaa464e5b6194ecd10c5e2563b6c43f95be83</originalsourceid><addsrcrecordid>eNp1kMlOwzAURS0EEqWw4A8iJBYs0trxEGdZVbQgKkCUYWm9OI5wCU2x05b8PYYwrNjYsnXueU8XoWOCBwTjZKhXMEgwEXwH9QjO0hhTkuyiHsYEx1QwvI8OvF-EJ2GS9lA2byC3lW3aaOXqlXGNNT6qy8g3Boo22kJjXDg34Xdrm-doUwdEB_4Q7ZVQeXP0fffRw-T8fnwRz26ml-PRLNZhHI8pkTkwKXkmmaASshRykKkpSlkUAEwww3NBMmZ0QbDmJuGC5kIzWmY8N5L20UnnDfu9rY1v1KJeu2UYqRLCkhSnmAXorIO0q713plQrZ1_BtYpg9VmMCsWor2ICe_otBK-hKh0stfV_ASlSShgJ3LDjtrYy7f9CNb4d_ZjjLmFDe--_CXAvKjhTrp6up4rzyd3V44SpOf0AxMl_5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214270704</pqid></control><display><type>article</type><title>Stability properties of steady water waves with vorticity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Constantin, Adrian ; Strauss, Walter A.</creator><creatorcontrib>Constantin, Adrian ; Strauss, Walter A.</creatorcontrib><description>We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20165</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Mathematics ; Partial differential equations ; Physics ; Sciences and techniques of general use</subject><ispartof>Communications on pure and applied mathematics, 2007-06, Vol.60 (6), p.911-950</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-318ba4885984638a97aba87edf8ddaa464e5b6194ecd10c5e2563b6c43f95be83</citedby><cites>FETCH-LOGICAL-c3645-318ba4885984638a97aba87edf8ddaa464e5b6194ecd10c5e2563b6c43f95be83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.20165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.20165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18673141$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantin, Adrian</creatorcontrib><creatorcontrib>Strauss, Walter A.</creatorcontrib><title>Stability properties of steady water waves with vorticity</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc.</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAURS0EEqWw4A8iJBYs0trxEGdZVbQgKkCUYWm9OI5wCU2x05b8PYYwrNjYsnXueU8XoWOCBwTjZKhXMEgwEXwH9QjO0hhTkuyiHsYEx1QwvI8OvF-EJ2GS9lA2byC3lW3aaOXqlXGNNT6qy8g3Boo22kJjXDg34Xdrm-doUwdEB_4Q7ZVQeXP0fffRw-T8fnwRz26ml-PRLNZhHI8pkTkwKXkmmaASshRykKkpSlkUAEwww3NBMmZ0QbDmJuGC5kIzWmY8N5L20UnnDfu9rY1v1KJeu2UYqRLCkhSnmAXorIO0q713plQrZ1_BtYpg9VmMCsWor2ICe_otBK-hKh0stfV_ASlSShgJ3LDjtrYy7f9CNb4d_ZjjLmFDe--_CXAvKjhTrp6up4rzyd3V44SpOf0AxMl_5g</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Constantin, Adrian</creator><creator>Strauss, Walter A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200706</creationdate><title>Stability properties of steady water waves with vorticity</title><author>Constantin, Adrian ; Strauss, Walter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-318ba4885984638a97aba87edf8ddaa464e5b6194ecd10c5e2563b6c43f95be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Adrian</creatorcontrib><creatorcontrib>Strauss, Walter A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Adrian</au><au>Strauss, Walter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability properties of steady water waves with vorticity</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2007-06</date><risdate>2007</risdate><volume>60</volume><issue>6</issue><spage>911</spage><epage>950</epage><pages>911-950</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20165</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2007-06, Vol.60 (6), p.911-950
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_214270704
source Wiley Online Library Journals Frontfile Complete
subjects Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Mathematics
Partial differential equations
Physics
Sciences and techniques of general use
title Stability properties of steady water waves with vorticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20properties%20of%20steady%20water%20waves%20with%20vorticity&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Constantin,%20Adrian&rft.date=2007-06&rft.volume=60&rft.issue=6&rft.spage=911&rft.epage=950&rft.pages=911-950&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20165&rft_dat=%3Cproquest_cross%3E1267717731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214270704&rft_id=info:pmid/&rfr_iscdi=true