Stability properties of steady water waves with vorticity
We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2007-06, Vol.60 (6), p.911-950 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 950 |
---|---|
container_issue | 6 |
container_start_page | 911 |
container_title | Communications on pure and applied mathematics |
container_volume | 60 |
creator | Constantin, Adrian Strauss, Walter A. |
description | We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.20165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_214270704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1267717731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-318ba4885984638a97aba87edf8ddaa464e5b6194ecd10c5e2563b6c43f95be83</originalsourceid><addsrcrecordid>eNp1kMlOwzAURS0EEqWw4A8iJBYs0trxEGdZVbQgKkCUYWm9OI5wCU2x05b8PYYwrNjYsnXueU8XoWOCBwTjZKhXMEgwEXwH9QjO0hhTkuyiHsYEx1QwvI8OvF-EJ2GS9lA2byC3lW3aaOXqlXGNNT6qy8g3Boo22kJjXDg34Xdrm-doUwdEB_4Q7ZVQeXP0fffRw-T8fnwRz26ml-PRLNZhHI8pkTkwKXkmmaASshRykKkpSlkUAEwww3NBMmZ0QbDmJuGC5kIzWmY8N5L20UnnDfu9rY1v1KJeu2UYqRLCkhSnmAXorIO0q713plQrZ1_BtYpg9VmMCsWor2ICe_otBK-hKh0stfV_ASlSShgJ3LDjtrYy7f9CNb4d_ZjjLmFDe--_CXAvKjhTrp6up4rzyd3V44SpOf0AxMl_5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214270704</pqid></control><display><type>article</type><title>Stability properties of steady water waves with vorticity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Constantin, Adrian ; Strauss, Walter A.</creator><creatorcontrib>Constantin, Adrian ; Strauss, Walter A.</creatorcontrib><description>We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.20165</identifier><identifier>CODEN: CPAMAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Mathematics ; Partial differential equations ; Physics ; Sciences and techniques of general use</subject><ispartof>Communications on pure and applied mathematics, 2007-06, Vol.60 (6), p.911-950</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-318ba4885984638a97aba87edf8ddaa464e5b6194ecd10c5e2563b6c43f95be83</citedby><cites>FETCH-LOGICAL-c3645-318ba4885984638a97aba87edf8ddaa464e5b6194ecd10c5e2563b6c43f95be83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.20165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.20165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18673141$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantin, Adrian</creatorcontrib><creatorcontrib>Strauss, Walter A.</creatorcontrib><title>Stability properties of steady water waves with vorticity</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc.</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAURS0EEqWw4A8iJBYs0trxEGdZVbQgKkCUYWm9OI5wCU2x05b8PYYwrNjYsnXueU8XoWOCBwTjZKhXMEgwEXwH9QjO0hhTkuyiHsYEx1QwvI8OvF-EJ2GS9lA2byC3lW3aaOXqlXGNNT6qy8g3Boo22kJjXDg34Xdrm-doUwdEB_4Q7ZVQeXP0fffRw-T8fnwRz26ml-PRLNZhHI8pkTkwKXkmmaASshRykKkpSlkUAEwww3NBMmZ0QbDmJuGC5kIzWmY8N5L20UnnDfu9rY1v1KJeu2UYqRLCkhSnmAXorIO0q713plQrZ1_BtYpg9VmMCsWor2ICe_otBK-hKh0stfV_ASlSShgJ3LDjtrYy7f9CNb4d_ZjjLmFDe--_CXAvKjhTrp6up4rzyd3V44SpOf0AxMl_5g</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Constantin, Adrian</creator><creator>Strauss, Walter A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200706</creationdate><title>Stability properties of steady water waves with vorticity</title><author>Constantin, Adrian ; Strauss, Walter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-318ba4885984638a97aba87edf8ddaa464e5b6194ecd10c5e2563b6c43f95be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Adrian</creatorcontrib><creatorcontrib>Strauss, Walter A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Adrian</au><au>Strauss, Walter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability properties of steady water waves with vorticity</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2007-06</date><risdate>2007</risdate><volume>60</volume><issue>6</issue><spage>911</spage><epage>950</epage><pages>911-950</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPAMAT</coden><abstract>We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.20165</doi><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2007-06, Vol.60 (6), p.911-950 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_214270704 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Mathematics Partial differential equations Physics Sciences and techniques of general use |
title | Stability properties of steady water waves with vorticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20properties%20of%20steady%20water%20waves%20with%20vorticity&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Constantin,%20Adrian&rft.date=2007-06&rft.volume=60&rft.issue=6&rft.spage=911&rft.epage=950&rft.pages=911-950&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPAMAT&rft_id=info:doi/10.1002/cpa.20165&rft_dat=%3Cproquest_cross%3E1267717731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214270704&rft_id=info:pmid/&rfr_iscdi=true |