MODELS FOR INITIAL DECIMAL IDEAS

Appropriate concrete and pictorial models allow students to construct meaning for rational numbers and operations with the numbers. To develop deep understanding of rational number, sixth through eighth graders must experience a variety of models (NCTM 2000). Since 1979, personnel from the Rational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Teaching children mathematics 2009-09, Vol.16 (2), p.106-117
Hauptverfasser: Cramer, Kathleen A., Monson, Debra S., Wyberg, Terry, Leavitt, Seth, Whitney, Stephanie B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 2
container_start_page 106
container_title Teaching children mathematics
container_volume 16
creator Cramer, Kathleen A.
Monson, Debra S.
Wyberg, Terry
Leavitt, Seth
Whitney, Stephanie B.
description Appropriate concrete and pictorial models allow students to construct meaning for rational numbers and operations with the numbers. To develop deep understanding of rational number, sixth through eighth graders must experience a variety of models (NCTM 2000). Since 1979, personnel from the Rational Number Project (RNP), a cooperative research and development project funded by the National Science Foundation, have been investigating children's learning of fractions, ratios, decimals, and proportionality. This articles discusses how the Rational Number Project group put a twist on the familiar 10 x 10 grid in their latest curriculum development project to build meaning for decimals and improve students' understanding of addition and subtraction with decimals. The authors share insights as to which concrete and pictorial models have been effective in developing initial decimal ideas, which include understanding what decimals mean in terms of fractions and place value, constructing order strategies to judge the relative size of decimals, understanding decimal equivalence, and developing meaningful strategies for adding and subtracting decimals (as opposed to rote memorization of a procedure). (Contains 6 figures and 1 table.)
doi_str_mv 10.5951/TCM.16.2.0106
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_214133669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ853613</ericid><jstor_id>41199386</jstor_id><sourcerecordid>41199386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1529-62fad09e10f62b67ad192d6161d7437bbe42763fee8eaddd448de326de0a0e4b3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKdHbwrFe2tekr40x9F1WuksuHoO7ZLChtqZbIf992ZU9i7f4fvxPfgRcg80SVUKz02-TAATllCgeEEmjDMZU5nRSzIBKnmcZhyvyY33WxqOC5iQaFnPi2oVLeqPqHwvm3JWRfMiL5chy3kxW92Sq7798vbuP6fkc1E0-Wtc1S9lPqviNaRMxcj61lBlgfbIOpStAcUMAoKRgsuus4JJ5L21mW2NMUJkxnKGxtKWWtHxKXkad3du-D1Yv9fb4eB-wkvNQADniCpA8Qit3eC9s73euc13644aqD450MGBBtRMnxwE_mHkrdusz2zxlqUcw-SUPI711u8Hd-4FgFI8Q_4HjZBcYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214133669</pqid></control><display><type>article</type><title>MODELS FOR INITIAL DECIMAL IDEAS</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Cramer, Kathleen A. ; Monson, Debra S. ; Wyberg, Terry ; Leavitt, Seth ; Whitney, Stephanie B.</creator><creatorcontrib>Cramer, Kathleen A. ; Monson, Debra S. ; Wyberg, Terry ; Leavitt, Seth ; Whitney, Stephanie B.</creatorcontrib><description>Appropriate concrete and pictorial models allow students to construct meaning for rational numbers and operations with the numbers. To develop deep understanding of rational number, sixth through eighth graders must experience a variety of models (NCTM 2000). Since 1979, personnel from the Rational Number Project (RNP), a cooperative research and development project funded by the National Science Foundation, have been investigating children's learning of fractions, ratios, decimals, and proportionality. This articles discusses how the Rational Number Project group put a twist on the familiar 10 x 10 grid in their latest curriculum development project to build meaning for decimals and improve students' understanding of addition and subtraction with decimals. The authors share insights as to which concrete and pictorial models have been effective in developing initial decimal ideas, which include understanding what decimals mean in terms of fractions and place value, constructing order strategies to judge the relative size of decimals, understanding decimal equivalence, and developing meaningful strategies for adding and subtracting decimals (as opposed to rote memorization of a procedure). (Contains 6 figures and 1 table.)</description><identifier>ISSN: 1073-5836</identifier><identifier>EISSN: 2327-0780</identifier><identifier>DOI: 10.5951/TCM.16.2.0106</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Arithmetic ; Children ; Color ; Colors ; Decimals ; Elementary school students ; Equivalence relation ; Fractions ; Grade 6 ; Grade 7 ; Grade 8 ; Mathematical Concepts ; Mathematical models ; Mathematics curricula ; Mathematics education ; Mathematics Instruction ; Mathematics teachers ; Mental imagery ; Middle School Students ; Number Concepts ; Rational numbers ; Secondary School Mathematics ; Symbols ; Teaching Methods</subject><ispartof>Teaching children mathematics, 2009-09, Vol.16 (2), p.106-117</ispartof><rights>Copyright © 2009, National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1529-62fad09e10f62b67ad192d6161d7437bbe42763fee8eaddd448de326de0a0e4b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41199386$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41199386$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ853613$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Cramer, Kathleen A.</creatorcontrib><creatorcontrib>Monson, Debra S.</creatorcontrib><creatorcontrib>Wyberg, Terry</creatorcontrib><creatorcontrib>Leavitt, Seth</creatorcontrib><creatorcontrib>Whitney, Stephanie B.</creatorcontrib><title>MODELS FOR INITIAL DECIMAL IDEAS</title><title>Teaching children mathematics</title><description>Appropriate concrete and pictorial models allow students to construct meaning for rational numbers and operations with the numbers. To develop deep understanding of rational number, sixth through eighth graders must experience a variety of models (NCTM 2000). Since 1979, personnel from the Rational Number Project (RNP), a cooperative research and development project funded by the National Science Foundation, have been investigating children's learning of fractions, ratios, decimals, and proportionality. This articles discusses how the Rational Number Project group put a twist on the familiar 10 x 10 grid in their latest curriculum development project to build meaning for decimals and improve students' understanding of addition and subtraction with decimals. The authors share insights as to which concrete and pictorial models have been effective in developing initial decimal ideas, which include understanding what decimals mean in terms of fractions and place value, constructing order strategies to judge the relative size of decimals, understanding decimal equivalence, and developing meaningful strategies for adding and subtracting decimals (as opposed to rote memorization of a procedure). (Contains 6 figures and 1 table.)</description><subject>Arithmetic</subject><subject>Children</subject><subject>Color</subject><subject>Colors</subject><subject>Decimals</subject><subject>Elementary school students</subject><subject>Equivalence relation</subject><subject>Fractions</subject><subject>Grade 6</subject><subject>Grade 7</subject><subject>Grade 8</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics curricula</subject><subject>Mathematics education</subject><subject>Mathematics Instruction</subject><subject>Mathematics teachers</subject><subject>Mental imagery</subject><subject>Middle School Students</subject><subject>Number Concepts</subject><subject>Rational numbers</subject><subject>Secondary School Mathematics</subject><subject>Symbols</subject><subject>Teaching Methods</subject><issn>1073-5836</issn><issn>2327-0780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKdHbwrFe2tekr40x9F1WuksuHoO7ZLChtqZbIf992ZU9i7f4fvxPfgRcg80SVUKz02-TAATllCgeEEmjDMZU5nRSzIBKnmcZhyvyY33WxqOC5iQaFnPi2oVLeqPqHwvm3JWRfMiL5chy3kxW92Sq7798vbuP6fkc1E0-Wtc1S9lPqviNaRMxcj61lBlgfbIOpStAcUMAoKRgsuus4JJ5L21mW2NMUJkxnKGxtKWWtHxKXkad3du-D1Yv9fb4eB-wkvNQADniCpA8Qit3eC9s73euc13644aqD450MGBBtRMnxwE_mHkrdusz2zxlqUcw-SUPI711u8Hd-4FgFI8Q_4HjZBcYg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Cramer, Kathleen A.</creator><creator>Monson, Debra S.</creator><creator>Wyberg, Terry</creator><creator>Leavitt, Seth</creator><creator>Whitney, Stephanie B.</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090901</creationdate><title>MODELS FOR INITIAL DECIMAL IDEAS</title><author>Cramer, Kathleen A. ; Monson, Debra S. ; Wyberg, Terry ; Leavitt, Seth ; Whitney, Stephanie B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1529-62fad09e10f62b67ad192d6161d7437bbe42763fee8eaddd448de326de0a0e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arithmetic</topic><topic>Children</topic><topic>Color</topic><topic>Colors</topic><topic>Decimals</topic><topic>Elementary school students</topic><topic>Equivalence relation</topic><topic>Fractions</topic><topic>Grade 6</topic><topic>Grade 7</topic><topic>Grade 8</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics curricula</topic><topic>Mathematics education</topic><topic>Mathematics Instruction</topic><topic>Mathematics teachers</topic><topic>Mental imagery</topic><topic>Middle School Students</topic><topic>Number Concepts</topic><topic>Rational numbers</topic><topic>Secondary School Mathematics</topic><topic>Symbols</topic><topic>Teaching Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cramer, Kathleen A.</creatorcontrib><creatorcontrib>Monson, Debra S.</creatorcontrib><creatorcontrib>Wyberg, Terry</creatorcontrib><creatorcontrib>Leavitt, Seth</creatorcontrib><creatorcontrib>Whitney, Stephanie B.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Teaching children mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cramer, Kathleen A.</au><au>Monson, Debra S.</au><au>Wyberg, Terry</au><au>Leavitt, Seth</au><au>Whitney, Stephanie B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ853613</ericid><atitle>MODELS FOR INITIAL DECIMAL IDEAS</atitle><jtitle>Teaching children mathematics</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>16</volume><issue>2</issue><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>1073-5836</issn><eissn>2327-0780</eissn><abstract>Appropriate concrete and pictorial models allow students to construct meaning for rational numbers and operations with the numbers. To develop deep understanding of rational number, sixth through eighth graders must experience a variety of models (NCTM 2000). Since 1979, personnel from the Rational Number Project (RNP), a cooperative research and development project funded by the National Science Foundation, have been investigating children's learning of fractions, ratios, decimals, and proportionality. This articles discusses how the Rational Number Project group put a twist on the familiar 10 x 10 grid in their latest curriculum development project to build meaning for decimals and improve students' understanding of addition and subtraction with decimals. The authors share insights as to which concrete and pictorial models have been effective in developing initial decimal ideas, which include understanding what decimals mean in terms of fractions and place value, constructing order strategies to judge the relative size of decimals, understanding decimal equivalence, and developing meaningful strategies for adding and subtracting decimals (as opposed to rote memorization of a procedure). (Contains 6 figures and 1 table.)</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/TCM.16.2.0106</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5836
ispartof Teaching children mathematics, 2009-09, Vol.16 (2), p.106-117
issn 1073-5836
2327-0780
language eng
recordid cdi_proquest_journals_214133669
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Arithmetic
Children
Color
Colors
Decimals
Elementary school students
Equivalence relation
Fractions
Grade 6
Grade 7
Grade 8
Mathematical Concepts
Mathematical models
Mathematics curricula
Mathematics education
Mathematics Instruction
Mathematics teachers
Mental imagery
Middle School Students
Number Concepts
Rational numbers
Secondary School Mathematics
Symbols
Teaching Methods
title MODELS FOR INITIAL DECIMAL IDEAS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELS%20FOR%20INITIAL%20DECIMAL%20IDEAS&rft.jtitle=Teaching%20children%20mathematics&rft.au=Cramer,%20Kathleen%20A.&rft.date=2009-09-01&rft.volume=16&rft.issue=2&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=1073-5836&rft.eissn=2327-0780&rft_id=info:doi/10.5951/TCM.16.2.0106&rft_dat=%3Cjstor_proqu%3E41199386%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214133669&rft_id=info:pmid/&rft_ericid=EJ853613&rft_jstor_id=41199386&rfr_iscdi=true