Algebraic Thinking and Pictorial Growth Patterns

Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Teaching children mathematics 2007-12, Vol.14 (5), p.302-308
Hauptverfasser: Billings, Esther M. H., Tiedt, Tarah L., Slater, Lindsey H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 5
container_start_page 302
container_title Teaching children mathematics
container_volume 14
creator Billings, Esther M. H.
Tiedt, Tarah L.
Slater, Lindsey H.
description Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing these mathematical relationships in various ways. Here, Billings et al explore how analyzing and extending pictorial growth patterns can promote algebraic thinking in young children, ultimately helping them to extend their numerical reasoning to think more generally about relationships. They conclude that the children's thinking reported here illustrates that analyzing and extending pictorial growth patterns provides a meaningful context for young children to think algebraically as they analyze change and think more generally about the relationships inherent in a pattern.
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_214132047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41199911</jstor_id><sourcerecordid>41199911</sourcerecordid><originalsourceid>FETCH-LOGICAL-j497-14dc0d44b03d2133c3541d9ec7645bac1aa33b04f46157075ac0bc8d7b27f5b53</originalsourceid><addsrcrecordid>eNotjk1Lw0AURQdRMFZ_ghDcB-bNe5PJLEvRKhTaRfZhPpJ2YkzqTIr47w3Uu7mbw7n3hmUChSq4qvgty4ArLGSF5T17SKnnS5AgY3w9HFsbTXB5fQrjZxiPuRl9fghunmIwQ76N0898yg9mnts4pkd215khtU__vWL122u9eS92--3HZr0retKqAPKOeyLL0QtAdCgJvG6dKkla48AYRMupoxKk4koax62rvLJCddJKXLGXq_Ycp-9Lm-amny5xXBYbAQQoOKkFer5CfVrONucYvkz8bQhAaw2Af5GPSLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214132047</pqid></control><display><type>article</type><title>Algebraic Thinking and Pictorial Growth Patterns</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Billings, Esther M. H. ; Tiedt, Tarah L. ; Slater, Lindsey H.</creator><creatorcontrib>Billings, Esther M. H. ; Tiedt, Tarah L. ; Slater, Lindsey H.</creatorcontrib><description>Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing these mathematical relationships in various ways. Here, Billings et al explore how analyzing and extending pictorial growth patterns can promote algebraic thinking in young children, ultimately helping them to extend their numerical reasoning to think more generally about relationships. They conclude that the children's thinking reported here illustrates that analyzing and extending pictorial growth patterns provides a meaningful context for young children to think algebraically as they analyze change and think more generally about the relationships inherent in a pattern.</description><identifier>ISSN: 1073-5836</identifier><identifier>EISSN: 2327-0780</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Algebra ; Child growth ; Children ; Children &amp; youth ; Critical thinking ; Cue cards ; Index numbers ; Mathematical growth ; Mathematics curricula ; Mathematics education ; Mathematics teachers ; Reasoning ; RESEARCH, REFLECTION, PRACTICE</subject><ispartof>Teaching children mathematics, 2007-12, Vol.14 (5), p.302-308</ispartof><rights>Copyright © 2007, National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Dec 2007/Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41199911$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41199911$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Billings, Esther M. H.</creatorcontrib><creatorcontrib>Tiedt, Tarah L.</creatorcontrib><creatorcontrib>Slater, Lindsey H.</creatorcontrib><title>Algebraic Thinking and Pictorial Growth Patterns</title><title>Teaching children mathematics</title><description>Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing these mathematical relationships in various ways. Here, Billings et al explore how analyzing and extending pictorial growth patterns can promote algebraic thinking in young children, ultimately helping them to extend their numerical reasoning to think more generally about relationships. They conclude that the children's thinking reported here illustrates that analyzing and extending pictorial growth patterns provides a meaningful context for young children to think algebraically as they analyze change and think more generally about the relationships inherent in a pattern.</description><subject>Algebra</subject><subject>Child growth</subject><subject>Children</subject><subject>Children &amp; youth</subject><subject>Critical thinking</subject><subject>Cue cards</subject><subject>Index numbers</subject><subject>Mathematical growth</subject><subject>Mathematics curricula</subject><subject>Mathematics education</subject><subject>Mathematics teachers</subject><subject>Reasoning</subject><subject>RESEARCH, REFLECTION, PRACTICE</subject><issn>1073-5836</issn><issn>2327-0780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotjk1Lw0AURQdRMFZ_ghDcB-bNe5PJLEvRKhTaRfZhPpJ2YkzqTIr47w3Uu7mbw7n3hmUChSq4qvgty4ArLGSF5T17SKnnS5AgY3w9HFsbTXB5fQrjZxiPuRl9fghunmIwQ76N0898yg9mnts4pkd215khtU__vWL122u9eS92--3HZr0retKqAPKOeyLL0QtAdCgJvG6dKkla48AYRMupoxKk4koax62rvLJCddJKXLGXq_Ycp-9Lm-amny5xXBYbAQQoOKkFer5CfVrONucYvkz8bQhAaw2Af5GPSLg</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Billings, Esther M. H.</creator><creator>Tiedt, Tarah L.</creator><creator>Slater, Lindsey H.</creator><general>National Council of Teachers of Mathematics</general><scope>JQ2</scope></search><sort><creationdate>20071201</creationdate><title>Algebraic Thinking and Pictorial Growth Patterns</title><author>Billings, Esther M. H. ; Tiedt, Tarah L. ; Slater, Lindsey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j497-14dc0d44b03d2133c3541d9ec7645bac1aa33b04f46157075ac0bc8d7b27f5b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Child growth</topic><topic>Children</topic><topic>Children &amp; youth</topic><topic>Critical thinking</topic><topic>Cue cards</topic><topic>Index numbers</topic><topic>Mathematical growth</topic><topic>Mathematics curricula</topic><topic>Mathematics education</topic><topic>Mathematics teachers</topic><topic>Reasoning</topic><topic>RESEARCH, REFLECTION, PRACTICE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billings, Esther M. H.</creatorcontrib><creatorcontrib>Tiedt, Tarah L.</creatorcontrib><creatorcontrib>Slater, Lindsey H.</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Teaching children mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billings, Esther M. H.</au><au>Tiedt, Tarah L.</au><au>Slater, Lindsey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic Thinking and Pictorial Growth Patterns</atitle><jtitle>Teaching children mathematics</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>14</volume><issue>5</issue><spage>302</spage><epage>308</epage><pages>302-308</pages><issn>1073-5836</issn><eissn>2327-0780</eissn><abstract>Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing these mathematical relationships in various ways. Here, Billings et al explore how analyzing and extending pictorial growth patterns can promote algebraic thinking in young children, ultimately helping them to extend their numerical reasoning to think more generally about relationships. They conclude that the children's thinking reported here illustrates that analyzing and extending pictorial growth patterns provides a meaningful context for young children to think algebraically as they analyze change and think more generally about the relationships inherent in a pattern.</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5836
ispartof Teaching children mathematics, 2007-12, Vol.14 (5), p.302-308
issn 1073-5836
2327-0780
language eng
recordid cdi_proquest_journals_214132047
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algebra
Child growth
Children
Children & youth
Critical thinking
Cue cards
Index numbers
Mathematical growth
Mathematics curricula
Mathematics education
Mathematics teachers
Reasoning
RESEARCH, REFLECTION, PRACTICE
title Algebraic Thinking and Pictorial Growth Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20Thinking%20and%20Pictorial%20Growth%20Patterns&rft.jtitle=Teaching%20children%20mathematics&rft.au=Billings,%20Esther%20M.%20H.&rft.date=2007-12-01&rft.volume=14&rft.issue=5&rft.spage=302&rft.epage=308&rft.pages=302-308&rft.issn=1073-5836&rft.eissn=2327-0780&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E41199911%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214132047&rft_id=info:pmid/&rft_jstor_id=41199911&rfr_iscdi=true