Algebraic Thinking and Pictorial Growth Patterns
Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing...
Gespeichert in:
Veröffentlicht in: | Teaching children mathematics 2007-12, Vol.14 (5), p.302-308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 5 |
container_start_page | 302 |
container_title | Teaching children mathematics |
container_volume | 14 |
creator | Billings, Esther M. H. Tiedt, Tarah L. Slater, Lindsey H. |
description | Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing these mathematical relationships in various ways. Here, Billings et al explore how analyzing and extending pictorial growth patterns can promote algebraic thinking in young children, ultimately helping them to extend their numerical reasoning to think more generally about relationships. They conclude that the children's thinking reported here illustrates that analyzing and extending pictorial growth patterns provides a meaningful context for young children to think algebraically as they analyze change and think more generally about the relationships inherent in a pattern. |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_214132047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41199911</jstor_id><sourcerecordid>41199911</sourcerecordid><originalsourceid>FETCH-LOGICAL-j497-14dc0d44b03d2133c3541d9ec7645bac1aa33b04f46157075ac0bc8d7b27f5b53</originalsourceid><addsrcrecordid>eNotjk1Lw0AURQdRMFZ_ghDcB-bNe5PJLEvRKhTaRfZhPpJ2YkzqTIr47w3Uu7mbw7n3hmUChSq4qvgty4ArLGSF5T17SKnnS5AgY3w9HFsbTXB5fQrjZxiPuRl9fghunmIwQ76N0898yg9mnts4pkd215khtU__vWL122u9eS92--3HZr0retKqAPKOeyLL0QtAdCgJvG6dKkla48AYRMupoxKk4koax62rvLJCddJKXLGXq_Ycp-9Lm-amny5xXBYbAQQoOKkFer5CfVrONucYvkz8bQhAaw2Af5GPSLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214132047</pqid></control><display><type>article</type><title>Algebraic Thinking and Pictorial Growth Patterns</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Billings, Esther M. H. ; Tiedt, Tarah L. ; Slater, Lindsey H.</creator><creatorcontrib>Billings, Esther M. H. ; Tiedt, Tarah L. ; Slater, Lindsey H.</creatorcontrib><description>Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing these mathematical relationships in various ways. Here, Billings et al explore how analyzing and extending pictorial growth patterns can promote algebraic thinking in young children, ultimately helping them to extend their numerical reasoning to think more generally about relationships. They conclude that the children's thinking reported here illustrates that analyzing and extending pictorial growth patterns provides a meaningful context for young children to think algebraically as they analyze change and think more generally about the relationships inherent in a pattern.</description><identifier>ISSN: 1073-5836</identifier><identifier>EISSN: 2327-0780</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Algebra ; Child growth ; Children ; Children & youth ; Critical thinking ; Cue cards ; Index numbers ; Mathematical growth ; Mathematics curricula ; Mathematics education ; Mathematics teachers ; Reasoning ; RESEARCH, REFLECTION, PRACTICE</subject><ispartof>Teaching children mathematics, 2007-12, Vol.14 (5), p.302-308</ispartof><rights>Copyright © 2007, National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics Dec 2007/Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41199911$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41199911$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Billings, Esther M. H.</creatorcontrib><creatorcontrib>Tiedt, Tarah L.</creatorcontrib><creatorcontrib>Slater, Lindsey H.</creatorcontrib><title>Algebraic Thinking and Pictorial Growth Patterns</title><title>Teaching children mathematics</title><description>Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing these mathematical relationships in various ways. Here, Billings et al explore how analyzing and extending pictorial growth patterns can promote algebraic thinking in young children, ultimately helping them to extend their numerical reasoning to think more generally about relationships. They conclude that the children's thinking reported here illustrates that analyzing and extending pictorial growth patterns provides a meaningful context for young children to think algebraically as they analyze change and think more generally about the relationships inherent in a pattern.</description><subject>Algebra</subject><subject>Child growth</subject><subject>Children</subject><subject>Children & youth</subject><subject>Critical thinking</subject><subject>Cue cards</subject><subject>Index numbers</subject><subject>Mathematical growth</subject><subject>Mathematics curricula</subject><subject>Mathematics education</subject><subject>Mathematics teachers</subject><subject>Reasoning</subject><subject>RESEARCH, REFLECTION, PRACTICE</subject><issn>1073-5836</issn><issn>2327-0780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotjk1Lw0AURQdRMFZ_ghDcB-bNe5PJLEvRKhTaRfZhPpJ2YkzqTIr47w3Uu7mbw7n3hmUChSq4qvgty4ArLGSF5T17SKnnS5AgY3w9HFsbTXB5fQrjZxiPuRl9fghunmIwQ76N0898yg9mnts4pkd215khtU__vWL122u9eS92--3HZr0retKqAPKOeyLL0QtAdCgJvG6dKkla48AYRMupoxKk4koax62rvLJCddJKXLGXq_Ycp-9Lm-amny5xXBYbAQQoOKkFer5CfVrONucYvkz8bQhAaw2Af5GPSLg</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Billings, Esther M. H.</creator><creator>Tiedt, Tarah L.</creator><creator>Slater, Lindsey H.</creator><general>National Council of Teachers of Mathematics</general><scope>JQ2</scope></search><sort><creationdate>20071201</creationdate><title>Algebraic Thinking and Pictorial Growth Patterns</title><author>Billings, Esther M. H. ; Tiedt, Tarah L. ; Slater, Lindsey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j497-14dc0d44b03d2133c3541d9ec7645bac1aa33b04f46157075ac0bc8d7b27f5b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Child growth</topic><topic>Children</topic><topic>Children & youth</topic><topic>Critical thinking</topic><topic>Cue cards</topic><topic>Index numbers</topic><topic>Mathematical growth</topic><topic>Mathematics curricula</topic><topic>Mathematics education</topic><topic>Mathematics teachers</topic><topic>Reasoning</topic><topic>RESEARCH, REFLECTION, PRACTICE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billings, Esther M. H.</creatorcontrib><creatorcontrib>Tiedt, Tarah L.</creatorcontrib><creatorcontrib>Slater, Lindsey H.</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Teaching children mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billings, Esther M. H.</au><au>Tiedt, Tarah L.</au><au>Slater, Lindsey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic Thinking and Pictorial Growth Patterns</atitle><jtitle>Teaching children mathematics</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>14</volume><issue>5</issue><spage>302</spage><epage>308</epage><pages>302-308</pages><issn>1073-5836</issn><eissn>2327-0780</eissn><abstract>Principles and Standards for School Mathematics advocates exploring algebraic ideas beginning in prekindergarten and continuing through the high school mathematics curriculum. In particular, algebraic thinking emphasizes analyzing change, generalizing relationships among quantities, and representing these mathematical relationships in various ways. Here, Billings et al explore how analyzing and extending pictorial growth patterns can promote algebraic thinking in young children, ultimately helping them to extend their numerical reasoning to think more generally about relationships. They conclude that the children's thinking reported here illustrates that analyzing and extending pictorial growth patterns provides a meaningful context for young children to think algebraically as they analyze change and think more generally about the relationships inherent in a pattern.</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5836 |
ispartof | Teaching children mathematics, 2007-12, Vol.14 (5), p.302-308 |
issn | 1073-5836 2327-0780 |
language | eng |
recordid | cdi_proquest_journals_214132047 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Child growth Children Children & youth Critical thinking Cue cards Index numbers Mathematical growth Mathematics curricula Mathematics education Mathematics teachers Reasoning RESEARCH, REFLECTION, PRACTICE |
title | Algebraic Thinking and Pictorial Growth Patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20Thinking%20and%20Pictorial%20Growth%20Patterns&rft.jtitle=Teaching%20children%20mathematics&rft.au=Billings,%20Esther%20M.%20H.&rft.date=2007-12-01&rft.volume=14&rft.issue=5&rft.spage=302&rft.epage=308&rft.pages=302-308&rft.issn=1073-5836&rft.eissn=2327-0780&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E41199911%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214132047&rft_id=info:pmid/&rft_jstor_id=41199911&rfr_iscdi=true |