Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving
The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2018-12, Vol.19 (12), p.3872-3882 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3882 |
---|---|
container_issue | 12 |
container_start_page | 3872 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 19 |
creator | Ma, Chao Xue, Jianru Liu, Yuehu Yang, Jing Li, Yongqiang Zheng, Nanning |
description | The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free when the vehicle follows the trajectory. In this paper, a state-increment statistical model (SISM) is proposed to describe the kinodynamic constraints of a vehicle by modeling the controller, the actuator, and the vehicle model jointly. The SISM consists of Gaussian distributions of lateral error increments in all state subspaces which are composed of the curvature radius, the velocity, and the lateral error. It is a data-driven modeling approach that can improve the SISM via increasing the number of samples of the increment-state, which is composed of the state and its corresponding increment of the lateral error. According to the SISM, the experience cost functions are designed to evaluate the trajectories for searching the best one with the lowest cost, and the real path can be predicted directly according to the planned trajectory and the vehicle state. The predicted path can be utilized effectually to evaluate the safety of the vehicle motion. |
doi_str_mv | 10.1109/TITS.2018.2797308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2141126764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8315150</ieee_id><sourcerecordid>2141126764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-caf1dddaa4fc97b1d5082cfda665c56075779bcbc2ad258388ccc22a77e133ac3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZmzRN-jg2_xQmPmziY8iSVDq6tCaZ4Le3dcOne-_hnHPhh9AtkBkAKR821WY9owTkjIpSMCLP0AQ4lxkhUJyPO82zknByia5i3A1qzgEm6GOpk86Wofl2Hq-TTi6rvAlu73z6u5uYGqNb_NpZ12LtLa5SxPO-bwc5NZ3HjcfzQ-p8t-8OEY9Vjf-8Rhe1bqO7Oc0pen963CxestXbc7WYrzJDS5Yyo2uw1mqd16YUW7CcSGpqq4uCG14QwYUot2ZrqLaUSyalMYZSLYQDxrRhU3R_7O1D93VwMalddwh-eKko5AC0EEU-uODoMqGLMbha9aHZ6_CjgKiRnxr5qZGfOvEbMnfHTOOc-_dLBhw4Yb8amWz1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2141126764</pqid></control><display><type>article</type><title>Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Chao ; Xue, Jianru ; Liu, Yuehu ; Yang, Jing ; Li, Yongqiang ; Zheng, Nanning</creator><creatorcontrib>Ma, Chao ; Xue, Jianru ; Liu, Yuehu ; Yang, Jing ; Li, Yongqiang ; Zheng, Nanning</creatorcontrib><description>The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free when the vehicle follows the trajectory. In this paper, a state-increment statistical model (SISM) is proposed to describe the kinodynamic constraints of a vehicle by modeling the controller, the actuator, and the vehicle model jointly. The SISM consists of Gaussian distributions of lateral error increments in all state subspaces which are composed of the curvature radius, the velocity, and the lateral error. It is a data-driven modeling approach that can improve the SISM via increasing the number of samples of the increment-state, which is composed of the state and its corresponding increment of the lateral error. According to the SISM, the experience cost functions are designed to evaluate the trajectories for searching the best one with the lowest cost, and the real path can be predicted directly according to the planned trajectory and the vehicle state. The predicted path can be utilized effectually to evaluate the safety of the vehicle motion.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2797308</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Autonomous vehicles ; Collision avoidance ; Collision dynamics ; Constraint modelling ; Curvature ; data-driven ; Errors ; experience cost ; Kinematics ; Mathematical model ; Modelling ; path prediction ; Predictive models ; Statistical analysis ; Statistical methods ; Statistical model ; Statistical models ; Subspaces ; Trajectory ; Trajectory analysis ; trajectory evaluation ; Trajectory planning</subject><ispartof>IEEE transactions on intelligent transportation systems, 2018-12, Vol.19 (12), p.3872-3882</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-caf1dddaa4fc97b1d5082cfda665c56075779bcbc2ad258388ccc22a77e133ac3</citedby><cites>FETCH-LOGICAL-c293t-caf1dddaa4fc97b1d5082cfda665c56075779bcbc2ad258388ccc22a77e133ac3</cites><orcidid>0000-0002-4994-9343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8315150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8315150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Xue, Jianru</creatorcontrib><creatorcontrib>Liu, Yuehu</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Li, Yongqiang</creatorcontrib><creatorcontrib>Zheng, Nanning</creatorcontrib><title>Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free when the vehicle follows the trajectory. In this paper, a state-increment statistical model (SISM) is proposed to describe the kinodynamic constraints of a vehicle by modeling the controller, the actuator, and the vehicle model jointly. The SISM consists of Gaussian distributions of lateral error increments in all state subspaces which are composed of the curvature radius, the velocity, and the lateral error. It is a data-driven modeling approach that can improve the SISM via increasing the number of samples of the increment-state, which is composed of the state and its corresponding increment of the lateral error. According to the SISM, the experience cost functions are designed to evaluate the trajectories for searching the best one with the lowest cost, and the real path can be predicted directly according to the planned trajectory and the vehicle state. The predicted path can be utilized effectually to evaluate the safety of the vehicle motion.</description><subject>Actuators</subject><subject>Autonomous vehicles</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Constraint modelling</subject><subject>Curvature</subject><subject>data-driven</subject><subject>Errors</subject><subject>experience cost</subject><subject>Kinematics</subject><subject>Mathematical model</subject><subject>Modelling</subject><subject>path prediction</subject><subject>Predictive models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical model</subject><subject>Statistical models</subject><subject>Subspaces</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>trajectory evaluation</subject><subject>Trajectory planning</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZmzRN-jg2_xQmPmziY8iSVDq6tCaZ4Le3dcOne-_hnHPhh9AtkBkAKR821WY9owTkjIpSMCLP0AQ4lxkhUJyPO82zknByia5i3A1qzgEm6GOpk86Wofl2Hq-TTi6rvAlu73z6u5uYGqNb_NpZ12LtLa5SxPO-bwc5NZ3HjcfzQ-p8t-8OEY9Vjf-8Rhe1bqO7Oc0pen963CxestXbc7WYrzJDS5Yyo2uw1mqd16YUW7CcSGpqq4uCG14QwYUot2ZrqLaUSyalMYZSLYQDxrRhU3R_7O1D93VwMalddwh-eKko5AC0EEU-uODoMqGLMbha9aHZ6_CjgKiRnxr5qZGfOvEbMnfHTOOc-_dLBhw4Yb8amWz1</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ma, Chao</creator><creator>Xue, Jianru</creator><creator>Liu, Yuehu</creator><creator>Yang, Jing</creator><creator>Li, Yongqiang</creator><creator>Zheng, Nanning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4994-9343</orcidid></search><sort><creationdate>20181201</creationdate><title>Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving</title><author>Ma, Chao ; Xue, Jianru ; Liu, Yuehu ; Yang, Jing ; Li, Yongqiang ; Zheng, Nanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-caf1dddaa4fc97b1d5082cfda665c56075779bcbc2ad258388ccc22a77e133ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Autonomous vehicles</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Constraint modelling</topic><topic>Curvature</topic><topic>data-driven</topic><topic>Errors</topic><topic>experience cost</topic><topic>Kinematics</topic><topic>Mathematical model</topic><topic>Modelling</topic><topic>path prediction</topic><topic>Predictive models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical model</topic><topic>Statistical models</topic><topic>Subspaces</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>trajectory evaluation</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Xue, Jianru</creatorcontrib><creatorcontrib>Liu, Yuehu</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Li, Yongqiang</creatorcontrib><creatorcontrib>Zheng, Nanning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Chao</au><au>Xue, Jianru</au><au>Liu, Yuehu</au><au>Yang, Jing</au><au>Li, Yongqiang</au><au>Zheng, Nanning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>19</volume><issue>12</issue><spage>3872</spage><epage>3882</epage><pages>3872-3882</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free when the vehicle follows the trajectory. In this paper, a state-increment statistical model (SISM) is proposed to describe the kinodynamic constraints of a vehicle by modeling the controller, the actuator, and the vehicle model jointly. The SISM consists of Gaussian distributions of lateral error increments in all state subspaces which are composed of the curvature radius, the velocity, and the lateral error. It is a data-driven modeling approach that can improve the SISM via increasing the number of samples of the increment-state, which is composed of the state and its corresponding increment of the lateral error. According to the SISM, the experience cost functions are designed to evaluate the trajectories for searching the best one with the lowest cost, and the real path can be predicted directly according to the planned trajectory and the vehicle state. The predicted path can be utilized effectually to evaluate the safety of the vehicle motion.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2797308</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4994-9343</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2018-12, Vol.19 (12), p.3872-3882 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2141126764 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Autonomous vehicles Collision avoidance Collision dynamics Constraint modelling Curvature data-driven Errors experience cost Kinematics Mathematical model Modelling path prediction Predictive models Statistical analysis Statistical methods Statistical model Statistical models Subspaces Trajectory Trajectory analysis trajectory evaluation Trajectory planning |
title | Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20State-Increment%20Statistical%20Model%20and%20Its%20Application%20in%20Autonomous%20Driving&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ma,%20Chao&rft.date=2018-12-01&rft.volume=19&rft.issue=12&rft.spage=3872&rft.epage=3882&rft.pages=3872-3882&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2797308&rft_dat=%3Cproquest_RIE%3E2141126764%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2141126764&rft_id=info:pmid/&rft_ieee_id=8315150&rfr_iscdi=true |