Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving

The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2018-12, Vol.19 (12), p.3872-3882
Hauptverfasser: Ma, Chao, Xue, Jianru, Liu, Yuehu, Yang, Jing, Li, Yongqiang, Zheng, Nanning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3882
container_issue 12
container_start_page 3872
container_title IEEE transactions on intelligent transportation systems
container_volume 19
creator Ma, Chao
Xue, Jianru
Liu, Yuehu
Yang, Jing
Li, Yongqiang
Zheng, Nanning
description The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free when the vehicle follows the trajectory. In this paper, a state-increment statistical model (SISM) is proposed to describe the kinodynamic constraints of a vehicle by modeling the controller, the actuator, and the vehicle model jointly. The SISM consists of Gaussian distributions of lateral error increments in all state subspaces which are composed of the curvature radius, the velocity, and the lateral error. It is a data-driven modeling approach that can improve the SISM via increasing the number of samples of the increment-state, which is composed of the state and its corresponding increment of the lateral error. According to the SISM, the experience cost functions are designed to evaluate the trajectories for searching the best one with the lowest cost, and the real path can be predicted directly according to the planned trajectory and the vehicle state. The predicted path can be utilized effectually to evaluate the safety of the vehicle motion.
doi_str_mv 10.1109/TITS.2018.2797308
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2141126764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8315150</ieee_id><sourcerecordid>2141126764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-caf1dddaa4fc97b1d5082cfda665c56075779bcbc2ad258388ccc22a77e133ac3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZmzRN-jg2_xQmPmziY8iSVDq6tCaZ4Le3dcOne-_hnHPhh9AtkBkAKR821WY9owTkjIpSMCLP0AQ4lxkhUJyPO82zknByia5i3A1qzgEm6GOpk86Wofl2Hq-TTi6rvAlu73z6u5uYGqNb_NpZ12LtLa5SxPO-bwc5NZ3HjcfzQ-p8t-8OEY9Vjf-8Rhe1bqO7Oc0pen963CxestXbc7WYrzJDS5Yyo2uw1mqd16YUW7CcSGpqq4uCG14QwYUot2ZrqLaUSyalMYZSLYQDxrRhU3R_7O1D93VwMalddwh-eKko5AC0EEU-uODoMqGLMbha9aHZ6_CjgKiRnxr5qZGfOvEbMnfHTOOc-_dLBhw4Yb8amWz1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2141126764</pqid></control><display><type>article</type><title>Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Chao ; Xue, Jianru ; Liu, Yuehu ; Yang, Jing ; Li, Yongqiang ; Zheng, Nanning</creator><creatorcontrib>Ma, Chao ; Xue, Jianru ; Liu, Yuehu ; Yang, Jing ; Li, Yongqiang ; Zheng, Nanning</creatorcontrib><description>The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free when the vehicle follows the trajectory. In this paper, a state-increment statistical model (SISM) is proposed to describe the kinodynamic constraints of a vehicle by modeling the controller, the actuator, and the vehicle model jointly. The SISM consists of Gaussian distributions of lateral error increments in all state subspaces which are composed of the curvature radius, the velocity, and the lateral error. It is a data-driven modeling approach that can improve the SISM via increasing the number of samples of the increment-state, which is composed of the state and its corresponding increment of the lateral error. According to the SISM, the experience cost functions are designed to evaluate the trajectories for searching the best one with the lowest cost, and the real path can be predicted directly according to the planned trajectory and the vehicle state. The predicted path can be utilized effectually to evaluate the safety of the vehicle motion.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2797308</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Autonomous vehicles ; Collision avoidance ; Collision dynamics ; Constraint modelling ; Curvature ; data-driven ; Errors ; experience cost ; Kinematics ; Mathematical model ; Modelling ; path prediction ; Predictive models ; Statistical analysis ; Statistical methods ; Statistical model ; Statistical models ; Subspaces ; Trajectory ; Trajectory analysis ; trajectory evaluation ; Trajectory planning</subject><ispartof>IEEE transactions on intelligent transportation systems, 2018-12, Vol.19 (12), p.3872-3882</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-caf1dddaa4fc97b1d5082cfda665c56075779bcbc2ad258388ccc22a77e133ac3</citedby><cites>FETCH-LOGICAL-c293t-caf1dddaa4fc97b1d5082cfda665c56075779bcbc2ad258388ccc22a77e133ac3</cites><orcidid>0000-0002-4994-9343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8315150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8315150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Xue, Jianru</creatorcontrib><creatorcontrib>Liu, Yuehu</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Li, Yongqiang</creatorcontrib><creatorcontrib>Zheng, Nanning</creatorcontrib><title>Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free when the vehicle follows the trajectory. In this paper, a state-increment statistical model (SISM) is proposed to describe the kinodynamic constraints of a vehicle by modeling the controller, the actuator, and the vehicle model jointly. The SISM consists of Gaussian distributions of lateral error increments in all state subspaces which are composed of the curvature radius, the velocity, and the lateral error. It is a data-driven modeling approach that can improve the SISM via increasing the number of samples of the increment-state, which is composed of the state and its corresponding increment of the lateral error. According to the SISM, the experience cost functions are designed to evaluate the trajectories for searching the best one with the lowest cost, and the real path can be predicted directly according to the planned trajectory and the vehicle state. The predicted path can be utilized effectually to evaluate the safety of the vehicle motion.</description><subject>Actuators</subject><subject>Autonomous vehicles</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Constraint modelling</subject><subject>Curvature</subject><subject>data-driven</subject><subject>Errors</subject><subject>experience cost</subject><subject>Kinematics</subject><subject>Mathematical model</subject><subject>Modelling</subject><subject>path prediction</subject><subject>Predictive models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical model</subject><subject>Statistical models</subject><subject>Subspaces</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>trajectory evaluation</subject><subject>Trajectory planning</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZmzRN-jg2_xQmPmziY8iSVDq6tCaZ4Le3dcOne-_hnHPhh9AtkBkAKR821WY9owTkjIpSMCLP0AQ4lxkhUJyPO82zknByia5i3A1qzgEm6GOpk86Wofl2Hq-TTi6rvAlu73z6u5uYGqNb_NpZ12LtLa5SxPO-bwc5NZ3HjcfzQ-p8t-8OEY9Vjf-8Rhe1bqO7Oc0pen963CxestXbc7WYrzJDS5Yyo2uw1mqd16YUW7CcSGpqq4uCG14QwYUot2ZrqLaUSyalMYZSLYQDxrRhU3R_7O1D93VwMalddwh-eKko5AC0EEU-uODoMqGLMbha9aHZ6_CjgKiRnxr5qZGfOvEbMnfHTOOc-_dLBhw4Yb8amWz1</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ma, Chao</creator><creator>Xue, Jianru</creator><creator>Liu, Yuehu</creator><creator>Yang, Jing</creator><creator>Li, Yongqiang</creator><creator>Zheng, Nanning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4994-9343</orcidid></search><sort><creationdate>20181201</creationdate><title>Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving</title><author>Ma, Chao ; Xue, Jianru ; Liu, Yuehu ; Yang, Jing ; Li, Yongqiang ; Zheng, Nanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-caf1dddaa4fc97b1d5082cfda665c56075779bcbc2ad258388ccc22a77e133ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Autonomous vehicles</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Constraint modelling</topic><topic>Curvature</topic><topic>data-driven</topic><topic>Errors</topic><topic>experience cost</topic><topic>Kinematics</topic><topic>Mathematical model</topic><topic>Modelling</topic><topic>path prediction</topic><topic>Predictive models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical model</topic><topic>Statistical models</topic><topic>Subspaces</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>trajectory evaluation</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Xue, Jianru</creatorcontrib><creatorcontrib>Liu, Yuehu</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Li, Yongqiang</creatorcontrib><creatorcontrib>Zheng, Nanning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Chao</au><au>Xue, Jianru</au><au>Liu, Yuehu</au><au>Yang, Jing</au><au>Li, Yongqiang</au><au>Zheng, Nanning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>19</volume><issue>12</issue><spage>3872</spage><epage>3882</epage><pages>3872-3882</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The aim of trajectory planning is to generate a feasible, collision-free trajectory to guide an autonomous vehicle from the initial state to the goal state safely. However, it is difficult to guarantee that the trajectory is feasible for the vehicle and the real path of the vehicle is collision-free when the vehicle follows the trajectory. In this paper, a state-increment statistical model (SISM) is proposed to describe the kinodynamic constraints of a vehicle by modeling the controller, the actuator, and the vehicle model jointly. The SISM consists of Gaussian distributions of lateral error increments in all state subspaces which are composed of the curvature radius, the velocity, and the lateral error. It is a data-driven modeling approach that can improve the SISM via increasing the number of samples of the increment-state, which is composed of the state and its corresponding increment of the lateral error. According to the SISM, the experience cost functions are designed to evaluate the trajectories for searching the best one with the lowest cost, and the real path can be predicted directly according to the planned trajectory and the vehicle state. The predicted path can be utilized effectually to evaluate the safety of the vehicle motion.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2797308</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4994-9343</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2018-12, Vol.19 (12), p.3872-3882
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2141126764
source IEEE Electronic Library (IEL)
subjects Actuators
Autonomous vehicles
Collision avoidance
Collision dynamics
Constraint modelling
Curvature
data-driven
Errors
experience cost
Kinematics
Mathematical model
Modelling
path prediction
Predictive models
Statistical analysis
Statistical methods
Statistical model
Statistical models
Subspaces
Trajectory
Trajectory analysis
trajectory evaluation
Trajectory planning
title Data-Driven State-Increment Statistical Model and Its Application in Autonomous Driving
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20State-Increment%20Statistical%20Model%20and%20Its%20Application%20in%20Autonomous%20Driving&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ma,%20Chao&rft.date=2018-12-01&rft.volume=19&rft.issue=12&rft.spage=3872&rft.epage=3882&rft.pages=3872-3882&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2797308&rft_dat=%3Cproquest_RIE%3E2141126764%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2141126764&rft_id=info:pmid/&rft_ieee_id=8315150&rfr_iscdi=true