Wavelet analysis-based projection pursuit autoregression model and its application in the runoff forecasting of Li Xiangjiang basin

The wavelet analysis technique was combined in this study with the projection pursuit autoregression (PPAR) model, and a new mid- and long-term runoff forecasting model, the wavelet analysis-based PPAR (PPAR-WA) is proposed, which realizes runoff forecasting from the perspective of the internal mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological sciences journal 2018-09, Vol.63 (12), p.1817-1830
Hauptverfasser: Jiang, Zhiqiang, Li, Rongbo, Ji, Changming, Li, Anqiang, Zhou, Jianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1830
container_issue 12
container_start_page 1817
container_title Hydrological sciences journal
container_volume 63
creator Jiang, Zhiqiang
Li, Rongbo
Ji, Changming
Li, Anqiang
Zhou, Jianzhong
description The wavelet analysis technique was combined in this study with the projection pursuit autoregression (PPAR) model, and a new mid- and long-term runoff forecasting model, the wavelet analysis-based PPAR (PPAR-WA) is proposed, which realizes runoff forecasting from the perspective of the internal mechanism of a sequence. The runoff forecasting of the leading hydropower station in the Li Xianjiang cascade reservoirs in China was carried out to test the performance of the proposed model, and the accuracy and stability of the forecasting results were evaluated and analysed. The results show that the average relative error of the forecasting period can reach 9.6%, and the best relative error is less than 5% in some years. In addition, compared with PPAR, a back-propagation neural network and autoregression moving average model through three evaluation indexes, the results of PPAR-WA have higher accuracy and stronger stability. So, it has a certain value of popularization and application.
doi_str_mv 10.1080/02626667.2018.1541091
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2141100396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2141100396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-15e58c298cbde5fee93b9e7ee2fd5204d3ef9f70cb678b1e8c505ae6a0ead42a3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpodttfkJAkLM3-rC89i0htElhoZeW5ibG8mirxSs5ktyy5_zxyt3ttZcRDO8z4n0IueZsw1nLbploRNM0241gvN1wVXPW8TdkJbhilaylektWS6ZaQu_Jh5QOjMm6a-SKvP6AXzhipuBhPCWXqh4SDnSK4YAmu-DpNMc0u5KYc4i4j5jSsj6GAceCDdTlRGGaRmfgL-A8zT-RxtkHa6ktkIGUnd_TYOnO0WcHfn9YBi2fOf-RvLMwJry6vGvy_fOnbw9P1e7r45eH-11lpGxzxRWq1oiuNf2AyiJ2su9wiyjsoASrB4m2s1tm-mbb9hxbo5gCbIAhDLUAuSY357ul3MuMKetDmGPpnbTgNedFSnGyJuqcMjGkFNHqKbojxJPmTC--9T_fevGtL74Ld3fmnC-Vj_A7xHHQGU5jiDaCNy5p-f8TfwB2qIr_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2141100396</pqid></control><display><type>article</type><title>Wavelet analysis-based projection pursuit autoregression model and its application in the runoff forecasting of Li Xiangjiang basin</title><source>Access via Taylor &amp; Francis</source><source>Alma/SFX Local Collection</source><creator>Jiang, Zhiqiang ; Li, Rongbo ; Ji, Changming ; Li, Anqiang ; Zhou, Jianzhong</creator><creatorcontrib>Jiang, Zhiqiang ; Li, Rongbo ; Ji, Changming ; Li, Anqiang ; Zhou, Jianzhong</creatorcontrib><description>The wavelet analysis technique was combined in this study with the projection pursuit autoregression (PPAR) model, and a new mid- and long-term runoff forecasting model, the wavelet analysis-based PPAR (PPAR-WA) is proposed, which realizes runoff forecasting from the perspective of the internal mechanism of a sequence. The runoff forecasting of the leading hydropower station in the Li Xianjiang cascade reservoirs in China was carried out to test the performance of the proposed model, and the accuracy and stability of the forecasting results were evaluated and analysed. The results show that the average relative error of the forecasting period can reach 9.6%, and the best relative error is less than 5% in some years. In addition, compared with PPAR, a back-propagation neural network and autoregression moving average model through three evaluation indexes, the results of PPAR-WA have higher accuracy and stronger stability. So, it has a certain value of popularization and application.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2018.1541091</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Accuracy ; Analysis ; auto regression model ; Back propagation networks ; Evaluation ; Forecasting ; Hydroelectric power ; Li Xiangjiang basin ; Mathematical models ; Model accuracy ; Neural networks ; Performance indices ; Peroxisome proliferator-activated receptors ; projection pursuit ; Regression analysis ; Runoff ; Runoff forecasting ; Stability ; Stability analysis ; Wavelet analysis ; Ya Yangshan Reservoir</subject><ispartof>Hydrological sciences journal, 2018-09, Vol.63 (12), p.1817-1830</ispartof><rights>2018 IAHS 2018</rights><rights>2018 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-15e58c298cbde5fee93b9e7ee2fd5204d3ef9f70cb678b1e8c505ae6a0ead42a3</citedby><cites>FETCH-LOGICAL-c338t-15e58c298cbde5fee93b9e7ee2fd5204d3ef9f70cb678b1e8c505ae6a0ead42a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02626667.2018.1541091$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02626667.2018.1541091$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,59652,60441</link.rule.ids></links><search><creatorcontrib>Jiang, Zhiqiang</creatorcontrib><creatorcontrib>Li, Rongbo</creatorcontrib><creatorcontrib>Ji, Changming</creatorcontrib><creatorcontrib>Li, Anqiang</creatorcontrib><creatorcontrib>Zhou, Jianzhong</creatorcontrib><title>Wavelet analysis-based projection pursuit autoregression model and its application in the runoff forecasting of Li Xiangjiang basin</title><title>Hydrological sciences journal</title><description>The wavelet analysis technique was combined in this study with the projection pursuit autoregression (PPAR) model, and a new mid- and long-term runoff forecasting model, the wavelet analysis-based PPAR (PPAR-WA) is proposed, which realizes runoff forecasting from the perspective of the internal mechanism of a sequence. The runoff forecasting of the leading hydropower station in the Li Xianjiang cascade reservoirs in China was carried out to test the performance of the proposed model, and the accuracy and stability of the forecasting results were evaluated and analysed. The results show that the average relative error of the forecasting period can reach 9.6%, and the best relative error is less than 5% in some years. In addition, compared with PPAR, a back-propagation neural network and autoregression moving average model through three evaluation indexes, the results of PPAR-WA have higher accuracy and stronger stability. So, it has a certain value of popularization and application.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>auto regression model</subject><subject>Back propagation networks</subject><subject>Evaluation</subject><subject>Forecasting</subject><subject>Hydroelectric power</subject><subject>Li Xiangjiang basin</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Performance indices</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>projection pursuit</subject><subject>Regression analysis</subject><subject>Runoff</subject><subject>Runoff forecasting</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Wavelet analysis</subject><subject>Ya Yangshan Reservoir</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpodttfkJAkLM3-rC89i0htElhoZeW5ibG8mirxSs5ktyy5_zxyt3ttZcRDO8z4n0IueZsw1nLbploRNM0241gvN1wVXPW8TdkJbhilaylektWS6ZaQu_Jh5QOjMm6a-SKvP6AXzhipuBhPCWXqh4SDnSK4YAmu-DpNMc0u5KYc4i4j5jSsj6GAceCDdTlRGGaRmfgL-A8zT-RxtkHa6ktkIGUnd_TYOnO0WcHfn9YBi2fOf-RvLMwJry6vGvy_fOnbw9P1e7r45eH-11lpGxzxRWq1oiuNf2AyiJ2su9wiyjsoASrB4m2s1tm-mbb9hxbo5gCbIAhDLUAuSY357ul3MuMKetDmGPpnbTgNedFSnGyJuqcMjGkFNHqKbojxJPmTC--9T_fevGtL74Ld3fmnC-Vj_A7xHHQGU5jiDaCNy5p-f8TfwB2qIr_</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Jiang, Zhiqiang</creator><creator>Li, Rongbo</creator><creator>Ji, Changming</creator><creator>Li, Anqiang</creator><creator>Zhou, Jianzhong</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20180910</creationdate><title>Wavelet analysis-based projection pursuit autoregression model and its application in the runoff forecasting of Li Xiangjiang basin</title><author>Jiang, Zhiqiang ; Li, Rongbo ; Ji, Changming ; Li, Anqiang ; Zhou, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-15e58c298cbde5fee93b9e7ee2fd5204d3ef9f70cb678b1e8c505ae6a0ead42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>auto regression model</topic><topic>Back propagation networks</topic><topic>Evaluation</topic><topic>Forecasting</topic><topic>Hydroelectric power</topic><topic>Li Xiangjiang basin</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Performance indices</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>projection pursuit</topic><topic>Regression analysis</topic><topic>Runoff</topic><topic>Runoff forecasting</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Wavelet analysis</topic><topic>Ya Yangshan Reservoir</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zhiqiang</creatorcontrib><creatorcontrib>Li, Rongbo</creatorcontrib><creatorcontrib>Ji, Changming</creatorcontrib><creatorcontrib>Li, Anqiang</creatorcontrib><creatorcontrib>Zhou, Jianzhong</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Zhiqiang</au><au>Li, Rongbo</au><au>Ji, Changming</au><au>Li, Anqiang</au><au>Zhou, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet analysis-based projection pursuit autoregression model and its application in the runoff forecasting of Li Xiangjiang basin</atitle><jtitle>Hydrological sciences journal</jtitle><date>2018-09-10</date><risdate>2018</risdate><volume>63</volume><issue>12</issue><spage>1817</spage><epage>1830</epage><pages>1817-1830</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>The wavelet analysis technique was combined in this study with the projection pursuit autoregression (PPAR) model, and a new mid- and long-term runoff forecasting model, the wavelet analysis-based PPAR (PPAR-WA) is proposed, which realizes runoff forecasting from the perspective of the internal mechanism of a sequence. The runoff forecasting of the leading hydropower station in the Li Xianjiang cascade reservoirs in China was carried out to test the performance of the proposed model, and the accuracy and stability of the forecasting results were evaluated and analysed. The results show that the average relative error of the forecasting period can reach 9.6%, and the best relative error is less than 5% in some years. In addition, compared with PPAR, a back-propagation neural network and autoregression moving average model through three evaluation indexes, the results of PPAR-WA have higher accuracy and stronger stability. So, it has a certain value of popularization and application.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02626667.2018.1541091</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-6667
ispartof Hydrological sciences journal, 2018-09, Vol.63 (12), p.1817-1830
issn 0262-6667
2150-3435
language eng
recordid cdi_proquest_journals_2141100396
source Access via Taylor & Francis; Alma/SFX Local Collection
subjects Accuracy
Analysis
auto regression model
Back propagation networks
Evaluation
Forecasting
Hydroelectric power
Li Xiangjiang basin
Mathematical models
Model accuracy
Neural networks
Performance indices
Peroxisome proliferator-activated receptors
projection pursuit
Regression analysis
Runoff
Runoff forecasting
Stability
Stability analysis
Wavelet analysis
Ya Yangshan Reservoir
title Wavelet analysis-based projection pursuit autoregression model and its application in the runoff forecasting of Li Xiangjiang basin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20analysis-based%20projection%20pursuit%20autoregression%20model%20and%20its%20application%20in%20the%20runoff%20forecasting%20of%20Li%20Xiangjiang%20basin&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Jiang,%20Zhiqiang&rft.date=2018-09-10&rft.volume=63&rft.issue=12&rft.spage=1817&rft.epage=1830&rft.pages=1817-1830&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2018.1541091&rft_dat=%3Cproquest_infor%3E2141100396%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2141100396&rft_id=info:pmid/&rfr_iscdi=true