Bio‐Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer

Bionic condensate microdrop self‐propelling (CMDSP) surfaces are attracting intensive interest due to their academic and commercial values. Up to now, it is still a great challenge to design and fabricate CMDSP nanostructures with superior condensation heat transfer (CHT) efficiency. Here, it is rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-12, Vol.28 (49), p.n/a
Hauptverfasser: Wang, Rui, Zhu, Jie, Meng, Kaixin, Wang, Hao, Deng, Tao, Gao, Xuefeng, Jiang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page
container_title Advanced functional materials
container_volume 28
creator Wang, Rui
Zhu, Jie
Meng, Kaixin
Wang, Hao
Deng, Tao
Gao, Xuefeng
Jiang, Lei
description Bionic condensate microdrop self‐propelling (CMDSP) surfaces are attracting intensive interest due to their academic and commercial values. Up to now, it is still a great challenge to design and fabricate CMDSP nanostructures with superior condensation heat transfer (CHT) efficiency. Here, it is reported that the CHT coefficient of copper surfaces can be enhanced maximally ≈320% via in situ growth and geometric regulation of closely packed aligned nanoneedles with CMDSP function. These experiments and theoretical analyses indicate that reducing the interspaces of nanoneedles can help reduce the departure diameters of condensate microdrops and increase their nucleation density, both of which are beneficial to enhance CHT. In contrast, increasing the tip size and height of nanoneedles can increase drop departure diameters and film‐layer thermal resistance, respectively, either of which is disadvantageous to enhance CHT. Clearly, only considering superhydrophobic effect is insufficient and both choosing ideal nanoarchitectures and optimizing their geometric parameters are very crucial to realize high‐efficiency CHT, which optimization can be achieved via simply controlling growth time of nanostructures. These findings offer new insights into the design and development of first‐rank CHT interface nanomaterials. Bio‐inspired closely packed aligned nanoneedles are demonstrated to be an ideal structure that exhibits a condensate microdrop self‐propelling function and an up to 320% enhancement in condensation heat transfer (CHT) coefficient as compared with flat copper surfaces. Experiments and theoretical analyses reveal respective and synergistic effects of geometric parameters to CHT enhancement. These findings help to design and develop high‐efficiency CHT surfaces.
doi_str_mv 10.1002/adfm.201800634
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2140882327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2140882327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3544-ce92ec20e75f96ba01b2d40757251793214c655798f30369a8795b2ed9c5fedf3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqWwZW2JdYsfSZwsQ2lppfKQKBK7yHXGjUtqBzsVZMcn8I18CamKYMnqjjTnzEg3CM4JHhKM6aUo1GZIMUkwjll4EPRITOIBwzQ5_J3J83Fw4v0aY8I5C3vB-5W2Xx-fM-Nr7aBAj9saXNkWztalXWqJRpX1ULXoQciXbp9VemW6vBPGGoCiApQ5WeoGZLN14JGyDo1NKYzUZoVG1hRgvGi0NWgKokELJ4xX4E6DIyUqD2c_2Q-eJuPFaDqY39_MRtl8IFkUhgMJKQVJMfBIpfFSYLKkRYh5xGlEeMooCWUcRTxNFMMsTkXC02hJoUhlpKBQrB9c7O_Wzr5uwTf52m6d6V7mnYuThDLKO2q4p6Sz3jtQee30Rrg2JzjftZvv2s1_2-2EdC-86Qraf-g8u57c_rnfSbmAew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140882327</pqid></control><display><type>article</type><title>Bio‐Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Rui ; Zhu, Jie ; Meng, Kaixin ; Wang, Hao ; Deng, Tao ; Gao, Xuefeng ; Jiang, Lei</creator><creatorcontrib>Wang, Rui ; Zhu, Jie ; Meng, Kaixin ; Wang, Hao ; Deng, Tao ; Gao, Xuefeng ; Jiang, Lei</creatorcontrib><description>Bionic condensate microdrop self‐propelling (CMDSP) surfaces are attracting intensive interest due to their academic and commercial values. Up to now, it is still a great challenge to design and fabricate CMDSP nanostructures with superior condensation heat transfer (CHT) efficiency. Here, it is reported that the CHT coefficient of copper surfaces can be enhanced maximally ≈320% via in situ growth and geometric regulation of closely packed aligned nanoneedles with CMDSP function. These experiments and theoretical analyses indicate that reducing the interspaces of nanoneedles can help reduce the departure diameters of condensate microdrops and increase their nucleation density, both of which are beneficial to enhance CHT. In contrast, increasing the tip size and height of nanoneedles can increase drop departure diameters and film‐layer thermal resistance, respectively, either of which is disadvantageous to enhance CHT. Clearly, only considering superhydrophobic effect is insufficient and both choosing ideal nanoarchitectures and optimizing their geometric parameters are very crucial to realize high‐efficiency CHT, which optimization can be achieved via simply controlling growth time of nanostructures. These findings offer new insights into the design and development of first‐rank CHT interface nanomaterials. Bio‐inspired closely packed aligned nanoneedles are demonstrated to be an ideal structure that exhibits a condensate microdrop self‐propelling function and an up to 320% enhancement in condensation heat transfer (CHT) coefficient as compared with flat copper surfaces. Experiments and theoretical analyses reveal respective and synergistic effects of geometric parameters to CHT enhancement. These findings help to design and develop high‐efficiency CHT surfaces.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201800634</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>aligned nanoneedles ; Bionics ; bio‐inspired materials ; condensate microdrop self‐propelling ; Condensates ; Condensation ; enhancing condensation heat transfer ; Heat transfer ; Hydrophobic surfaces ; Hydrophobicity ; Materials science ; Nanomaterials ; Nanostructure ; Nucleation ; Optimization ; superhydrophobic surfaces ; Thermal resistance</subject><ispartof>Advanced functional materials, 2018-12, Vol.28 (49), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3544-ce92ec20e75f96ba01b2d40757251793214c655798f30369a8795b2ed9c5fedf3</citedby><cites>FETCH-LOGICAL-c3544-ce92ec20e75f96ba01b2d40757251793214c655798f30369a8795b2ed9c5fedf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201800634$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201800634$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Meng, Kaixin</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Gao, Xuefeng</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><title>Bio‐Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer</title><title>Advanced functional materials</title><description>Bionic condensate microdrop self‐propelling (CMDSP) surfaces are attracting intensive interest due to their academic and commercial values. Up to now, it is still a great challenge to design and fabricate CMDSP nanostructures with superior condensation heat transfer (CHT) efficiency. Here, it is reported that the CHT coefficient of copper surfaces can be enhanced maximally ≈320% via in situ growth and geometric regulation of closely packed aligned nanoneedles with CMDSP function. These experiments and theoretical analyses indicate that reducing the interspaces of nanoneedles can help reduce the departure diameters of condensate microdrops and increase their nucleation density, both of which are beneficial to enhance CHT. In contrast, increasing the tip size and height of nanoneedles can increase drop departure diameters and film‐layer thermal resistance, respectively, either of which is disadvantageous to enhance CHT. Clearly, only considering superhydrophobic effect is insufficient and both choosing ideal nanoarchitectures and optimizing their geometric parameters are very crucial to realize high‐efficiency CHT, which optimization can be achieved via simply controlling growth time of nanostructures. These findings offer new insights into the design and development of first‐rank CHT interface nanomaterials. Bio‐inspired closely packed aligned nanoneedles are demonstrated to be an ideal structure that exhibits a condensate microdrop self‐propelling function and an up to 320% enhancement in condensation heat transfer (CHT) coefficient as compared with flat copper surfaces. Experiments and theoretical analyses reveal respective and synergistic effects of geometric parameters to CHT enhancement. These findings help to design and develop high‐efficiency CHT surfaces.</description><subject>aligned nanoneedles</subject><subject>Bionics</subject><subject>bio‐inspired materials</subject><subject>condensate microdrop self‐propelling</subject><subject>Condensates</subject><subject>Condensation</subject><subject>enhancing condensation heat transfer</subject><subject>Heat transfer</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nucleation</subject><subject>Optimization</subject><subject>superhydrophobic surfaces</subject><subject>Thermal resistance</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqWwZW2JdYsfSZwsQ2lppfKQKBK7yHXGjUtqBzsVZMcn8I18CamKYMnqjjTnzEg3CM4JHhKM6aUo1GZIMUkwjll4EPRITOIBwzQ5_J3J83Fw4v0aY8I5C3vB-5W2Xx-fM-Nr7aBAj9saXNkWztalXWqJRpX1ULXoQciXbp9VemW6vBPGGoCiApQ5WeoGZLN14JGyDo1NKYzUZoVG1hRgvGi0NWgKokELJ4xX4E6DIyUqD2c_2Q-eJuPFaDqY39_MRtl8IFkUhgMJKQVJMfBIpfFSYLKkRYh5xGlEeMooCWUcRTxNFMMsTkXC02hJoUhlpKBQrB9c7O_Wzr5uwTf52m6d6V7mnYuThDLKO2q4p6Sz3jtQee30Rrg2JzjftZvv2s1_2-2EdC-86Qraf-g8u57c_rnfSbmAew</recordid><startdate>20181205</startdate><enddate>20181205</enddate><creator>Wang, Rui</creator><creator>Zhu, Jie</creator><creator>Meng, Kaixin</creator><creator>Wang, Hao</creator><creator>Deng, Tao</creator><creator>Gao, Xuefeng</creator><creator>Jiang, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181205</creationdate><title>Bio‐Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer</title><author>Wang, Rui ; Zhu, Jie ; Meng, Kaixin ; Wang, Hao ; Deng, Tao ; Gao, Xuefeng ; Jiang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3544-ce92ec20e75f96ba01b2d40757251793214c655798f30369a8795b2ed9c5fedf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aligned nanoneedles</topic><topic>Bionics</topic><topic>bio‐inspired materials</topic><topic>condensate microdrop self‐propelling</topic><topic>Condensates</topic><topic>Condensation</topic><topic>enhancing condensation heat transfer</topic><topic>Heat transfer</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nucleation</topic><topic>Optimization</topic><topic>superhydrophobic surfaces</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Meng, Kaixin</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Gao, Xuefeng</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rui</au><au>Zhu, Jie</au><au>Meng, Kaixin</au><au>Wang, Hao</au><au>Deng, Tao</au><au>Gao, Xuefeng</au><au>Jiang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio‐Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer</atitle><jtitle>Advanced functional materials</jtitle><date>2018-12-05</date><risdate>2018</risdate><volume>28</volume><issue>49</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Bionic condensate microdrop self‐propelling (CMDSP) surfaces are attracting intensive interest due to their academic and commercial values. Up to now, it is still a great challenge to design and fabricate CMDSP nanostructures with superior condensation heat transfer (CHT) efficiency. Here, it is reported that the CHT coefficient of copper surfaces can be enhanced maximally ≈320% via in situ growth and geometric regulation of closely packed aligned nanoneedles with CMDSP function. These experiments and theoretical analyses indicate that reducing the interspaces of nanoneedles can help reduce the departure diameters of condensate microdrops and increase their nucleation density, both of which are beneficial to enhance CHT. In contrast, increasing the tip size and height of nanoneedles can increase drop departure diameters and film‐layer thermal resistance, respectively, either of which is disadvantageous to enhance CHT. Clearly, only considering superhydrophobic effect is insufficient and both choosing ideal nanoarchitectures and optimizing their geometric parameters are very crucial to realize high‐efficiency CHT, which optimization can be achieved via simply controlling growth time of nanostructures. These findings offer new insights into the design and development of first‐rank CHT interface nanomaterials. Bio‐inspired closely packed aligned nanoneedles are demonstrated to be an ideal structure that exhibits a condensate microdrop self‐propelling function and an up to 320% enhancement in condensation heat transfer (CHT) coefficient as compared with flat copper surfaces. Experiments and theoretical analyses reveal respective and synergistic effects of geometric parameters to CHT enhancement. These findings help to design and develop high‐efficiency CHT surfaces.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201800634</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-12, Vol.28 (49), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2140882327
source Wiley Online Library Journals Frontfile Complete
subjects aligned nanoneedles
Bionics
bio‐inspired materials
condensate microdrop self‐propelling
Condensates
Condensation
enhancing condensation heat transfer
Heat transfer
Hydrophobic surfaces
Hydrophobicity
Materials science
Nanomaterials
Nanostructure
Nucleation
Optimization
superhydrophobic surfaces
Thermal resistance
title Bio‐Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%E2%80%90Inspired%20Superhydrophobic%20Closely%20Packed%20Aligned%20Nanoneedle%20Architectures%20for%20Enhancing%20Condensation%20Heat%20Transfer&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Rui&rft.date=2018-12-05&rft.volume=28&rft.issue=49&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201800634&rft_dat=%3Cproquest_cross%3E2140882327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2140882327&rft_id=info:pmid/&rfr_iscdi=true