MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones
Android platform is increasingly targeted by attackers due to its popularity and openness. Traditional defenses to malware are largely reliant on expert analysis to design the discriminative features manually, which are easy to bypass with the use of sophisticated detection avoidance techniques. The...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2018-01, Vol.2018 (2018), p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2018 |
creator | Guo, Jie Bo, Cheng Liu, Chuanchang Ren, Bingfei Junliang, Chen |
description | Android platform is increasingly targeted by attackers due to its popularity and openness. Traditional defenses to malware are largely reliant on expert analysis to design the discriminative features manually, which are easy to bypass with the use of sophisticated detection avoidance techniques. Therefore, more effective and easy-to-use approaches for detection of Android malware are in demand. In this paper, we present MobiSentry, a novel lightweight defense system for malware classification and categorization on smartphones. Besides conventional static features such as permissions and API calls, MobiSentry also employs the N-gram features of operation codes (n-opcode). We present two comprehensive performance comparisons among several state-of-the-art classification algorithms with multiple evaluation metrics: (1) malware detection on 184,486 benign applications and 21,306 malware samples, and (2) malware categorization on DREBIN, the largest labeled Android malware datasets. We utilize the ensemble of these supervised classifiers to design MobiSentry, which outperforms several related approaches and gives a satisfying performance in the evaluation. Furthermore, we integrate MobiSentry with Android OS that enables smartphones with Android to extract features and to predict whether the application is benign or malicious. Experimental results on real smartphones show that users can easily and effectively protect their devices against malware through this system with a small run-time overhead. |
doi_str_mv | 10.1155/2018/4317501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2140829910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2140829910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-66a5472f6407914d07e0c0e778d8ec01e2f62d21147be111efbd20b9611250a3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AiCs7pzbMEPGrde2nTtN5kzh-wIbgdditp88I6ZjOTzrH_3owNPHrKI_m898I3iq4RHhCFGHDAfJAmKAXgSdTDXIq4ADE_DbWQaQwo5-fRhfdLgAwSIXvR58RWzZTazu0e2cxuldOejZTfMdVqNjKG6q75IfZM3b6yLbOGPbXa2UaziVqFBmLhdvqlXLde2Jb8ZXRm1MrT1fHsR7OX0Wz4Fo8_Xt-HT-O4TjLo4ixTIpXcZCnIAlMNkqAGkjLXOdWAFJ645oiprAgRyVSaQ1VkiFyASvrR7WHs2tnvDfmuXNqNa8PGkmMKOS8KhKDuD6p21ntHply7Jvx1VyKU-9DKfWjlMbTA7w580bRabZv_9M1BUzBk1J_mkObAk1_-tXRB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140829910</pqid></control><display><type>article</type><title>MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Jie ; Bo, Cheng ; Liu, Chuanchang ; Ren, Bingfei ; Junliang, Chen</creator><contributor>Cheng, Wenchi ; Wenchi Cheng</contributor><creatorcontrib>Guo, Jie ; Bo, Cheng ; Liu, Chuanchang ; Ren, Bingfei ; Junliang, Chen ; Cheng, Wenchi ; Wenchi Cheng</creatorcontrib><description>Android platform is increasingly targeted by attackers due to its popularity and openness. Traditional defenses to malware are largely reliant on expert analysis to design the discriminative features manually, which are easy to bypass with the use of sophisticated detection avoidance techniques. Therefore, more effective and easy-to-use approaches for detection of Android malware are in demand. In this paper, we present MobiSentry, a novel lightweight defense system for malware classification and categorization on smartphones. Besides conventional static features such as permissions and API calls, MobiSentry also employs the N-gram features of operation codes (n-opcode). We present two comprehensive performance comparisons among several state-of-the-art classification algorithms with multiple evaluation metrics: (1) malware detection on 184,486 benign applications and 21,306 malware samples, and (2) malware categorization on DREBIN, the largest labeled Android malware datasets. We utilize the ensemble of these supervised classifiers to design MobiSentry, which outperforms several related approaches and gives a satisfying performance in the evaluation. Furthermore, we integrate MobiSentry with Android OS that enables smartphones with Android to extract features and to predict whether the application is benign or malicious. Experimental results on real smartphones show that users can easily and effectively protect their devices against malware through this system with a small run-time overhead.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2018/4317501</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial intelligence ; Cellular telephones ; Classification ; Datasets ; Feature extraction ; Information systems ; International conferences ; Malware ; Mobile operating systems ; Performance assessment ; Performance evaluation ; Smartphones ; State of the art</subject><ispartof>Mobile information systems, 2018-01, Vol.2018 (2018), p.1-14</ispartof><rights>Copyright © 2018 Bingfei Ren et al.</rights><rights>Copyright © 2018 Bingfei Ren et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-66a5472f6407914d07e0c0e778d8ec01e2f62d21147be111efbd20b9611250a3</citedby><cites>FETCH-LOGICAL-c360t-66a5472f6407914d07e0c0e778d8ec01e2f62d21147be111efbd20b9611250a3</cites><orcidid>0000-0003-2160-2839 ; 0000-0002-0418-9889 ; 0000-0001-7491-2465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Cheng, Wenchi</contributor><contributor>Wenchi Cheng</contributor><creatorcontrib>Guo, Jie</creatorcontrib><creatorcontrib>Bo, Cheng</creatorcontrib><creatorcontrib>Liu, Chuanchang</creatorcontrib><creatorcontrib>Ren, Bingfei</creatorcontrib><creatorcontrib>Junliang, Chen</creatorcontrib><title>MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones</title><title>Mobile information systems</title><description>Android platform is increasingly targeted by attackers due to its popularity and openness. Traditional defenses to malware are largely reliant on expert analysis to design the discriminative features manually, which are easy to bypass with the use of sophisticated detection avoidance techniques. Therefore, more effective and easy-to-use approaches for detection of Android malware are in demand. In this paper, we present MobiSentry, a novel lightweight defense system for malware classification and categorization on smartphones. Besides conventional static features such as permissions and API calls, MobiSentry also employs the N-gram features of operation codes (n-opcode). We present two comprehensive performance comparisons among several state-of-the-art classification algorithms with multiple evaluation metrics: (1) malware detection on 184,486 benign applications and 21,306 malware samples, and (2) malware categorization on DREBIN, the largest labeled Android malware datasets. We utilize the ensemble of these supervised classifiers to design MobiSentry, which outperforms several related approaches and gives a satisfying performance in the evaluation. Furthermore, we integrate MobiSentry with Android OS that enables smartphones with Android to extract features and to predict whether the application is benign or malicious. Experimental results on real smartphones show that users can easily and effectively protect their devices against malware through this system with a small run-time overhead.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cellular telephones</subject><subject>Classification</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Information systems</subject><subject>International conferences</subject><subject>Malware</subject><subject>Mobile operating systems</subject><subject>Performance assessment</subject><subject>Performance evaluation</subject><subject>Smartphones</subject><subject>State of the art</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0M9LwzAUB_AiCs7pzbMEPGrde2nTtN5kzh-wIbgdditp88I6ZjOTzrH_3owNPHrKI_m898I3iq4RHhCFGHDAfJAmKAXgSdTDXIq4ADE_DbWQaQwo5-fRhfdLgAwSIXvR58RWzZTazu0e2cxuldOejZTfMdVqNjKG6q75IfZM3b6yLbOGPbXa2UaziVqFBmLhdvqlXLde2Jb8ZXRm1MrT1fHsR7OX0Wz4Fo8_Xt-HT-O4TjLo4ixTIpXcZCnIAlMNkqAGkjLXOdWAFJ645oiprAgRyVSaQ1VkiFyASvrR7WHs2tnvDfmuXNqNa8PGkmMKOS8KhKDuD6p21ntHply7Jvx1VyKU-9DKfWjlMbTA7w580bRabZv_9M1BUzBk1J_mkObAk1_-tXRB</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Guo, Jie</creator><creator>Bo, Cheng</creator><creator>Liu, Chuanchang</creator><creator>Ren, Bingfei</creator><creator>Junliang, Chen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2160-2839</orcidid><orcidid>https://orcid.org/0000-0002-0418-9889</orcidid><orcidid>https://orcid.org/0000-0001-7491-2465</orcidid></search><sort><creationdate>20180101</creationdate><title>MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones</title><author>Guo, Jie ; Bo, Cheng ; Liu, Chuanchang ; Ren, Bingfei ; Junliang, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-66a5472f6407914d07e0c0e778d8ec01e2f62d21147be111efbd20b9611250a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cellular telephones</topic><topic>Classification</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Information systems</topic><topic>International conferences</topic><topic>Malware</topic><topic>Mobile operating systems</topic><topic>Performance assessment</topic><topic>Performance evaluation</topic><topic>Smartphones</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jie</creatorcontrib><creatorcontrib>Bo, Cheng</creatorcontrib><creatorcontrib>Liu, Chuanchang</creatorcontrib><creatorcontrib>Ren, Bingfei</creatorcontrib><creatorcontrib>Junliang, Chen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jie</au><au>Bo, Cheng</au><au>Liu, Chuanchang</au><au>Ren, Bingfei</au><au>Junliang, Chen</au><au>Cheng, Wenchi</au><au>Wenchi Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones</atitle><jtitle>Mobile information systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Android platform is increasingly targeted by attackers due to its popularity and openness. Traditional defenses to malware are largely reliant on expert analysis to design the discriminative features manually, which are easy to bypass with the use of sophisticated detection avoidance techniques. Therefore, more effective and easy-to-use approaches for detection of Android malware are in demand. In this paper, we present MobiSentry, a novel lightweight defense system for malware classification and categorization on smartphones. Besides conventional static features such as permissions and API calls, MobiSentry also employs the N-gram features of operation codes (n-opcode). We present two comprehensive performance comparisons among several state-of-the-art classification algorithms with multiple evaluation metrics: (1) malware detection on 184,486 benign applications and 21,306 malware samples, and (2) malware categorization on DREBIN, the largest labeled Android malware datasets. We utilize the ensemble of these supervised classifiers to design MobiSentry, which outperforms several related approaches and gives a satisfying performance in the evaluation. Furthermore, we integrate MobiSentry with Android OS that enables smartphones with Android to extract features and to predict whether the application is benign or malicious. Experimental results on real smartphones show that users can easily and effectively protect their devices against malware through this system with a small run-time overhead.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4317501</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2160-2839</orcidid><orcidid>https://orcid.org/0000-0002-0418-9889</orcidid><orcidid>https://orcid.org/0000-0001-7491-2465</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2018-01, Vol.2018 (2018), p.1-14 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2140829910 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Cellular telephones Classification Datasets Feature extraction Information systems International conferences Malware Mobile operating systems Performance assessment Performance evaluation Smartphones State of the art |
title | MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MobiSentry:%20Towards%20Easy%20and%20Effective%20Detection%20of%20Android%20Malware%20on%20Smartphones&rft.jtitle=Mobile%20information%20systems&rft.au=Guo,%20Jie&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2018/4317501&rft_dat=%3Cproquest_cross%3E2140829910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2140829910&rft_id=info:pmid/&rfr_iscdi=true |