Uniform regularity results for critical and subcritical surface energies
We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform ϵ -regula...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2019-02, Vol.58 (1), p.1-39, Article 10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Calculus of variations and partial differential equations |
container_volume | 58 |
creator | Bernard, Yann Rivière, Tristan |
description | We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform
ϵ
-regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand. |
doi_str_mv | 10.1007/s00526-018-1457-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2140165220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2140165220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-854b82c5a4142cd5067ef94a15812d3f454923fe8fb50b865b5cf2fc718a45ba3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz9GZNEnToyzqCgte3HNI06R06bZr0h7235tS0ZOnmXm8NzN8hNwjPCJA8RQBBJMUUFHkoqBwQVbIc0ZB5eKSrKDknDIpy2tyE-MBAIVifEW2-771QzhmwTVTZ0I7nlMbp26MWdIzm5TWmi4zfZ3Fqfqd4xS8sS5zvQtN6-ItufKmi-7up67J_vXlc7Olu4-3983zjtoc5UiV4JViVhiOnNlagCycL7lJ7yCrc88FL1nunfKVgEpJUQnrmbcFKsNFZfI1eVj2nsLwNbk46sMwhT6d1Aw5oBSMQXLh4rJhiDE4r0-hPZpw1gh6BqYXYDoB0zMwPWfYkonJ2zcu_G3-P_QNYf1t0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140165220</pqid></control><display><type>article</type><title>Uniform regularity results for critical and subcritical surface energies</title><source>Springer Nature - Complete Springer Journals</source><creator>Bernard, Yann ; Rivière, Tristan</creator><creatorcontrib>Bernard, Yann ; Rivière, Tristan</creatorcontrib><description>We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform
ϵ
-regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-018-1457-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Regularity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2019-02, Vol.58 (1), p.1-39, Article 10</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-854b82c5a4142cd5067ef94a15812d3f454923fe8fb50b865b5cf2fc718a45ba3</citedby><cites>FETCH-LOGICAL-c316t-854b82c5a4142cd5067ef94a15812d3f454923fe8fb50b865b5cf2fc718a45ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-018-1457-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-018-1457-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bernard, Yann</creatorcontrib><creatorcontrib>Rivière, Tristan</creatorcontrib><title>Uniform regularity results for critical and subcritical surface energies</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform
ϵ
-regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz9GZNEnToyzqCgte3HNI06R06bZr0h7235tS0ZOnmXm8NzN8hNwjPCJA8RQBBJMUUFHkoqBwQVbIc0ZB5eKSrKDknDIpy2tyE-MBAIVifEW2-771QzhmwTVTZ0I7nlMbp26MWdIzm5TWmi4zfZ3Fqfqd4xS8sS5zvQtN6-ItufKmi-7up67J_vXlc7Olu4-3983zjtoc5UiV4JViVhiOnNlagCycL7lJ7yCrc88FL1nunfKVgEpJUQnrmbcFKsNFZfI1eVj2nsLwNbk46sMwhT6d1Aw5oBSMQXLh4rJhiDE4r0-hPZpw1gh6BqYXYDoB0zMwPWfYkonJ2zcu_G3-P_QNYf1t0w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Bernard, Yann</creator><creator>Rivière, Tristan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190201</creationdate><title>Uniform regularity results for critical and subcritical surface energies</title><author>Bernard, Yann ; Rivière, Tristan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-854b82c5a4142cd5067ef94a15812d3f454923fe8fb50b865b5cf2fc718a45ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernard, Yann</creatorcontrib><creatorcontrib>Rivière, Tristan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernard, Yann</au><au>Rivière, Tristan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform regularity results for critical and subcritical surface energies</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>58</volume><issue>1</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>10</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform
ϵ
-regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-018-1457-0</doi><tpages>39</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2019-02, Vol.58 (1), p.1-39, Article 10 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2140165220 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Mathematical and Computational Physics Mathematics Mathematics and Statistics Regularity Systems Theory Theoretical |
title | Uniform regularity results for critical and subcritical surface energies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20regularity%20results%20for%20critical%20and%20subcritical%20surface%20energies&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Bernard,%20Yann&rft.date=2019-02-01&rft.volume=58&rft.issue=1&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=10&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-018-1457-0&rft_dat=%3Cproquest_cross%3E2140165220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2140165220&rft_id=info:pmid/&rfr_iscdi=true |