Uniform regularity results for critical and subcritical surface energies

We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform ϵ -regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2019-02, Vol.58 (1), p.1-39, Article 10
Hauptverfasser: Bernard, Yann, Rivière, Tristan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 1
container_title Calculus of variations and partial differential equations
container_volume 58
creator Bernard, Yann
Rivière, Tristan
description We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform ϵ -regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand.
doi_str_mv 10.1007/s00526-018-1457-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2140165220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2140165220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-854b82c5a4142cd5067ef94a15812d3f454923fe8fb50b865b5cf2fc718a45ba3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz9GZNEnToyzqCgte3HNI06R06bZr0h7235tS0ZOnmXm8NzN8hNwjPCJA8RQBBJMUUFHkoqBwQVbIc0ZB5eKSrKDknDIpy2tyE-MBAIVifEW2-771QzhmwTVTZ0I7nlMbp26MWdIzm5TWmi4zfZ3Fqfqd4xS8sS5zvQtN6-ItufKmi-7up67J_vXlc7Olu4-3983zjtoc5UiV4JViVhiOnNlagCycL7lJ7yCrc88FL1nunfKVgEpJUQnrmbcFKsNFZfI1eVj2nsLwNbk46sMwhT6d1Aw5oBSMQXLh4rJhiDE4r0-hPZpw1gh6BqYXYDoB0zMwPWfYkonJ2zcu_G3-P_QNYf1t0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140165220</pqid></control><display><type>article</type><title>Uniform regularity results for critical and subcritical surface energies</title><source>Springer Nature - Complete Springer Journals</source><creator>Bernard, Yann ; Rivière, Tristan</creator><creatorcontrib>Bernard, Yann ; Rivière, Tristan</creatorcontrib><description>We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform ϵ -regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-018-1457-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Regularity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2019-02, Vol.58 (1), p.1-39, Article 10</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-854b82c5a4142cd5067ef94a15812d3f454923fe8fb50b865b5cf2fc718a45ba3</citedby><cites>FETCH-LOGICAL-c316t-854b82c5a4142cd5067ef94a15812d3f454923fe8fb50b865b5cf2fc718a45ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-018-1457-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-018-1457-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bernard, Yann</creatorcontrib><creatorcontrib>Rivière, Tristan</creatorcontrib><title>Uniform regularity results for critical and subcritical surface energies</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform ϵ -regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz9GZNEnToyzqCgte3HNI06R06bZr0h7235tS0ZOnmXm8NzN8hNwjPCJA8RQBBJMUUFHkoqBwQVbIc0ZB5eKSrKDknDIpy2tyE-MBAIVifEW2-771QzhmwTVTZ0I7nlMbp26MWdIzm5TWmi4zfZ3Fqfqd4xS8sS5zvQtN6-ItufKmi-7up67J_vXlc7Olu4-3983zjtoc5UiV4JViVhiOnNlagCycL7lJ7yCrc88FL1nunfKVgEpJUQnrmbcFKsNFZfI1eVj2nsLwNbk46sMwhT6d1Aw5oBSMQXLh4rJhiDE4r0-hPZpw1gh6BqYXYDoB0zMwPWfYkonJ2zcu_G3-P_QNYf1t0w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Bernard, Yann</creator><creator>Rivière, Tristan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190201</creationdate><title>Uniform regularity results for critical and subcritical surface energies</title><author>Bernard, Yann ; Rivière, Tristan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-854b82c5a4142cd5067ef94a15812d3f454923fe8fb50b865b5cf2fc718a45ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernard, Yann</creatorcontrib><creatorcontrib>Rivière, Tristan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernard, Yann</au><au>Rivière, Tristan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform regularity results for critical and subcritical surface energies</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>58</volume><issue>1</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>10</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform ϵ -regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-018-1457-0</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2019-02, Vol.58 (1), p.1-39, Article 10
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2140165220
source Springer Nature - Complete Springer Journals
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Regularity
Systems Theory
Theoretical
title Uniform regularity results for critical and subcritical surface energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20regularity%20results%20for%20critical%20and%20subcritical%20surface%20energies&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Bernard,%20Yann&rft.date=2019-02-01&rft.volume=58&rft.issue=1&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=10&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-018-1457-0&rft_dat=%3Cproquest_cross%3E2140165220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2140165220&rft_id=info:pmid/&rfr_iscdi=true