Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk

This paper develops a Bayesian semiparametric quantile regression model for count data. The count responses are converted to continuous responses through the “jittered” method and a transform function. A Bayesian semiparametric quantile regression modeling approach is then developed. The error distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical economics 2020-05, Vol.58 (5), p.2085-2103
Hauptverfasser: Jiang, Xuejun, Li, Yunxian, Yang, Aijun, Zhou, Ruowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2103
container_issue 5
container_start_page 2085
container_title Empirical economics
container_volume 58
creator Jiang, Xuejun
Li, Yunxian
Yang, Aijun
Zhou, Ruowei
description This paper develops a Bayesian semiparametric quantile regression model for count data. The count responses are converted to continuous responses through the “jittered” method and a transform function. A Bayesian semiparametric quantile regression modeling approach is then developed. The error distribution in the quantile regression model is assumed to be a mixture of asymmetric Laplace distributions constructed with Dirichlet process. Historical death tolls of China caused by earthquakes from 1969 to 2006 are used for fitting, and a parametric model is employed for model comparison. The results of model comparison show that the proposed semiparametric quantile regression model outperforms the parametric model. The empirical analysis illustrates that the impact of earthquake magnitude on death tolls is significant. Moreover, the impact of the magnitude is more pronounced on higher percentiles of death tolls.
doi_str_mv 10.1007/s00181-018-1615-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2139825817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139825817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-10c1e3ea8d45c08b1a88fd31ccfeaf397acb454273883e569e46a1fe5a5d52633</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeA52hmk-xmj1r8goIXvQkhzc7WtPvRJumh_96UFTx5mWHgfd6ZeQm5AX4HnFf3kXPQwHJhUIJi8oTMQArFdF3AKZlxUVWsEqI4JxcxrjnnQis5I1-P9oDR24FG7P3WBttjCt7R3d4OyXdIA64CxujHgfZjg50fVrQdA8WYfG_TcUQb0ncGNkhbm2zn04EGHzdX5Ky1XcTr335JPp-fPuavbPH-8jZ_WDAnNCQG3AEKtLqRynG9BKt12whwrkXbirqybimVLCqhtUBV1ihLCy0qqxpVlEJcktvJdxvG3T4fZtbjPgx5pSlA1LpQGqqsgknlwhhjwNZsQ_4gHAxwcwzRTCGaXMwxRCMzU0xMzNphheHP-X_oBzOodoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139825817</pqid></control><display><type>article</type><title>Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Jiang, Xuejun ; Li, Yunxian ; Yang, Aijun ; Zhou, Ruowei</creator><creatorcontrib>Jiang, Xuejun ; Li, Yunxian ; Yang, Aijun ; Zhou, Ruowei</creatorcontrib><description>This paper develops a Bayesian semiparametric quantile regression model for count data. The count responses are converted to continuous responses through the “jittered” method and a transform function. A Bayesian semiparametric quantile regression modeling approach is then developed. The error distribution in the quantile regression model is assumed to be a mixture of asymmetric Laplace distributions constructed with Dirichlet process. Historical death tolls of China caused by earthquakes from 1969 to 2006 are used for fitting, and a parametric model is employed for model comparison. The results of model comparison show that the proposed semiparametric quantile regression model outperforms the parametric model. The empirical analysis illustrates that the impact of earthquake magnitude on death tolls is significant. Moreover, the impact of the magnitude is more pronounced on higher percentiles of death tolls.</description><identifier>ISSN: 0377-7332</identifier><identifier>EISSN: 1435-8921</identifier><identifier>DOI: 10.1007/s00181-018-1615-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Death &amp; dying ; Earthquakes ; Econometrics ; Economic models ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Fatalities ; Finance ; Insurance ; Management ; Regression analysis ; Statistics for Business ; Tolls</subject><ispartof>Empirical economics, 2020-05, Vol.58 (5), p.2085-2103</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-10c1e3ea8d45c08b1a88fd31ccfeaf397acb454273883e569e46a1fe5a5d52633</citedby><cites>FETCH-LOGICAL-c381t-10c1e3ea8d45c08b1a88fd31ccfeaf397acb454273883e569e46a1fe5a5d52633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00181-018-1615-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00181-018-1615-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Jiang, Xuejun</creatorcontrib><creatorcontrib>Li, Yunxian</creatorcontrib><creatorcontrib>Yang, Aijun</creatorcontrib><creatorcontrib>Zhou, Ruowei</creatorcontrib><title>Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk</title><title>Empirical economics</title><addtitle>Empir Econ</addtitle><description>This paper develops a Bayesian semiparametric quantile regression model for count data. The count responses are converted to continuous responses through the “jittered” method and a transform function. A Bayesian semiparametric quantile regression modeling approach is then developed. The error distribution in the quantile regression model is assumed to be a mixture of asymmetric Laplace distributions constructed with Dirichlet process. Historical death tolls of China caused by earthquakes from 1969 to 2006 are used for fitting, and a parametric model is employed for model comparison. The results of model comparison show that the proposed semiparametric quantile regression model outperforms the parametric model. The empirical analysis illustrates that the impact of earthquake magnitude on death tolls is significant. Moreover, the impact of the magnitude is more pronounced on higher percentiles of death tolls.</description><subject>Bayesian analysis</subject><subject>Death &amp; dying</subject><subject>Earthquakes</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Fatalities</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Regression analysis</subject><subject>Statistics for Business</subject><subject>Tolls</subject><issn>0377-7332</issn><issn>1435-8921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWD9-gLeA52hmk-xmj1r8goIXvQkhzc7WtPvRJumh_96UFTx5mWHgfd6ZeQm5AX4HnFf3kXPQwHJhUIJi8oTMQArFdF3AKZlxUVWsEqI4JxcxrjnnQis5I1-P9oDR24FG7P3WBttjCt7R3d4OyXdIA64CxujHgfZjg50fVrQdA8WYfG_TcUQb0ncGNkhbm2zn04EGHzdX5Ky1XcTr335JPp-fPuavbPH-8jZ_WDAnNCQG3AEKtLqRynG9BKt12whwrkXbirqybimVLCqhtUBV1ihLCy0qqxpVlEJcktvJdxvG3T4fZtbjPgx5pSlA1LpQGqqsgknlwhhjwNZsQ_4gHAxwcwzRTCGaXMwxRCMzU0xMzNphheHP-X_oBzOodoc</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Jiang, Xuejun</creator><creator>Li, Yunxian</creator><creator>Yang, Aijun</creator><creator>Zhou, Ruowei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200501</creationdate><title>Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk</title><author>Jiang, Xuejun ; Li, Yunxian ; Yang, Aijun ; Zhou, Ruowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-10c1e3ea8d45c08b1a88fd31ccfeaf397acb454273883e569e46a1fe5a5d52633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Death &amp; dying</topic><topic>Earthquakes</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Fatalities</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Regression analysis</topic><topic>Statistics for Business</topic><topic>Tolls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xuejun</creatorcontrib><creatorcontrib>Li, Yunxian</creatorcontrib><creatorcontrib>Yang, Aijun</creatorcontrib><creatorcontrib>Zhou, Ruowei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Empirical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xuejun</au><au>Li, Yunxian</au><au>Yang, Aijun</au><au>Zhou, Ruowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk</atitle><jtitle>Empirical economics</jtitle><stitle>Empir Econ</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>58</volume><issue>5</issue><spage>2085</spage><epage>2103</epage><pages>2085-2103</pages><issn>0377-7332</issn><eissn>1435-8921</eissn><abstract>This paper develops a Bayesian semiparametric quantile regression model for count data. The count responses are converted to continuous responses through the “jittered” method and a transform function. A Bayesian semiparametric quantile regression modeling approach is then developed. The error distribution in the quantile regression model is assumed to be a mixture of asymmetric Laplace distributions constructed with Dirichlet process. Historical death tolls of China caused by earthquakes from 1969 to 2006 are used for fitting, and a parametric model is employed for model comparison. The results of model comparison show that the proposed semiparametric quantile regression model outperforms the parametric model. The empirical analysis illustrates that the impact of earthquake magnitude on death tolls is significant. Moreover, the impact of the magnitude is more pronounced on higher percentiles of death tolls.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00181-018-1615-4</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-7332
ispartof Empirical economics, 2020-05, Vol.58 (5), p.2085-2103
issn 0377-7332
1435-8921
language eng
recordid cdi_proquest_journals_2139825817
source EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals
subjects Bayesian analysis
Death & dying
Earthquakes
Econometrics
Economic models
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Fatalities
Finance
Insurance
Management
Regression analysis
Statistics for Business
Tolls
title Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20semiparametric%20quantile%20regression%20modeling%20for%20estimating%20earthquake%20fatality%20risk&rft.jtitle=Empirical%20economics&rft.au=Jiang,%20Xuejun&rft.date=2020-05-01&rft.volume=58&rft.issue=5&rft.spage=2085&rft.epage=2103&rft.pages=2085-2103&rft.issn=0377-7332&rft.eissn=1435-8921&rft_id=info:doi/10.1007/s00181-018-1615-4&rft_dat=%3Cproquest_cross%3E2139825817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139825817&rft_id=info:pmid/&rfr_iscdi=true