Higher Order Algorithm for Solving Lambert’s Problem

This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the astronautical sciences 2018-12, Vol.65 (4), p.400-422
Hauptverfasser: Alhulayil, Mohammad, Younes, Ahmad Bani, Turner, James D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 4
container_start_page 400
container_title The Journal of the astronautical sciences
container_volume 65
creator Alhulayil, Mohammad
Younes, Ahmad Bani
Turner, James D.
description This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method.
doi_str_mv 10.1007/s40295-018-0137-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2139652117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139652117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-13d40a9a2ed13666ea5011648d85eb4bba937e8c78e46eb31f8c6c97460dfea83</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFYfwFvAc3Rnd7Mfx1LUCoUK6nnZJJM0JWnqbip48zV8vT6JWyJ48jAzMPw_4EfINdBboFTdBUGZyVIKOg5XqTkhEwbHT6bglEwoZZAaEOycXISwoZQDNTAhctHUa_TJypdxz9q6982w7pKq98lL33402zpZui5HPxy-vkPy7Pu8xe6SnFWuDXj1e6fk7eH-db5Il6vHp_lsmRYc5JACLwV1xjEsgUsp0WUUQApd6gxzkefOcIW6UBqFxJxDpQtZGCUkLSt0mk_JzZi78_37HsNgN_3eb2OlZcCNzBiAiioYVYXvQ_BY2Z1vOuc_LVB7xGNHPDbisUc81kQPGz0harc1-r_k_00_QCZnVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139652117</pqid></control><display><type>article</type><title>Higher Order Algorithm for Solving Lambert’s Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alhulayil, Mohammad ; Younes, Ahmad Bani ; Turner, James D.</creator><creatorcontrib>Alhulayil, Mohammad ; Younes, Ahmad Bani ; Turner, James D.</creatorcontrib><description>This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method.</description><identifier>ISSN: 0021-9142</identifier><identifier>EISSN: 2195-0571</identifier><identifier>DOI: 10.1007/s40295-018-0137-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerospace Technology and Astronautics ; Algorithms ; Convergence ; Engineering ; Equations of motion ; Iterative methods ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Newton methods ; Numerical integration ; Perturbation methods ; Software ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Taylor series ; Tensors ; Thermal expansion</subject><ispartof>The Journal of the astronautical sciences, 2018-12, Vol.65 (4), p.400-422</ispartof><rights>American Astronautical Society 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-13d40a9a2ed13666ea5011648d85eb4bba937e8c78e46eb31f8c6c97460dfea83</citedby><cites>FETCH-LOGICAL-c316t-13d40a9a2ed13666ea5011648d85eb4bba937e8c78e46eb31f8c6c97460dfea83</cites><orcidid>0000-0001-8415-7264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40295-018-0137-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40295-018-0137-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alhulayil, Mohammad</creatorcontrib><creatorcontrib>Younes, Ahmad Bani</creatorcontrib><creatorcontrib>Turner, James D.</creatorcontrib><title>Higher Order Algorithm for Solving Lambert’s Problem</title><title>The Journal of the astronautical sciences</title><addtitle>J of Astronaut Sci</addtitle><description>This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method.</description><subject>Aerospace Technology and Astronautics</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Iterative methods</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Newton methods</subject><subject>Numerical integration</subject><subject>Perturbation methods</subject><subject>Software</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Taylor series</subject><subject>Tensors</subject><subject>Thermal expansion</subject><issn>0021-9142</issn><issn>2195-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AQxxdRsFYfwFvAc3Rnd7Mfx1LUCoUK6nnZJJM0JWnqbip48zV8vT6JWyJ48jAzMPw_4EfINdBboFTdBUGZyVIKOg5XqTkhEwbHT6bglEwoZZAaEOycXISwoZQDNTAhctHUa_TJypdxz9q6982w7pKq98lL33402zpZui5HPxy-vkPy7Pu8xe6SnFWuDXj1e6fk7eH-db5Il6vHp_lsmRYc5JACLwV1xjEsgUsp0WUUQApd6gxzkefOcIW6UBqFxJxDpQtZGCUkLSt0mk_JzZi78_37HsNgN_3eb2OlZcCNzBiAiioYVYXvQ_BY2Z1vOuc_LVB7xGNHPDbisUc81kQPGz0harc1-r_k_00_QCZnVw</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>Alhulayil, Mohammad</creator><creator>Younes, Ahmad Bani</creator><creator>Turner, James D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8415-7264</orcidid></search><sort><creationdate>20181215</creationdate><title>Higher Order Algorithm for Solving Lambert’s Problem</title><author>Alhulayil, Mohammad ; Younes, Ahmad Bani ; Turner, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-13d40a9a2ed13666ea5011648d85eb4bba937e8c78e46eb31f8c6c97460dfea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Iterative methods</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Newton methods</topic><topic>Numerical integration</topic><topic>Perturbation methods</topic><topic>Software</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Taylor series</topic><topic>Tensors</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhulayil, Mohammad</creatorcontrib><creatorcontrib>Younes, Ahmad Bani</creatorcontrib><creatorcontrib>Turner, James D.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the astronautical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhulayil, Mohammad</au><au>Younes, Ahmad Bani</au><au>Turner, James D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Order Algorithm for Solving Lambert’s Problem</atitle><jtitle>The Journal of the astronautical sciences</jtitle><stitle>J of Astronaut Sci</stitle><date>2018-12-15</date><risdate>2018</risdate><volume>65</volume><issue>4</issue><spage>400</spage><epage>422</epage><pages>400-422</pages><issn>0021-9142</issn><eissn>2195-0571</eissn><abstract>This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40295-018-0137-9</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8415-7264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9142
ispartof The Journal of the astronautical sciences, 2018-12, Vol.65 (4), p.400-422
issn 0021-9142
2195-0571
language eng
recordid cdi_proquest_journals_2139652117
source SpringerLink Journals - AutoHoldings
subjects Aerospace Technology and Astronautics
Algorithms
Convergence
Engineering
Equations of motion
Iterative methods
Mathematical Applications in the Physical Sciences
Mathematical models
Newton methods
Numerical integration
Perturbation methods
Software
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Taylor series
Tensors
Thermal expansion
title Higher Order Algorithm for Solving Lambert’s Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Order%20Algorithm%20for%20Solving%20Lambert%E2%80%99s%20Problem&rft.jtitle=The%20Journal%20of%20the%20astronautical%20sciences&rft.au=Alhulayil,%20Mohammad&rft.date=2018-12-15&rft.volume=65&rft.issue=4&rft.spage=400&rft.epage=422&rft.pages=400-422&rft.issn=0021-9142&rft.eissn=2195-0571&rft_id=info:doi/10.1007/s40295-018-0137-9&rft_dat=%3Cproquest_cross%3E2139652117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139652117&rft_id=info:pmid/&rfr_iscdi=true