Higher Order Algorithm for Solving Lambert’s Problem

This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the astronautical sciences 2018-12, Vol.65 (4), p.400-422
Hauptverfasser: Alhulayil, Mohammad, Younes, Ahmad Bani, Turner, James D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a high-order perturbation expansion method for solving Lambert’s problem. The necessary condition for the problem is defined by a fourth-order Taylor expansion of the terminal error vector. The Taylor expansion partial derivative models are generated by Computational Differentiation (CD) tools. A novel derivative enhanced numerical integration algorithm is presented for computing nonlinear state transition tensors, where only the equation of motion is coded. A high-order successive approximation algorithm is presented for inverting the problems nonlinear necessary condition. Closed-form expressions are obtained for the first, second,third, and fourth order perturbation expansion coefficients. Numerical results are presented that compare the convergence rate and accuracy of first-through fourth-order expansions. The initial p-iteration starting guess is used as the Lambert’s algorithm initial condition. Numerical experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions, when compared to a classical first-order Newton method.
ISSN:0021-9142
2195-0571
DOI:10.1007/s40295-018-0137-9