Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2
We conducted global warming projections using global atmospheric models with high-horizontal resolution of 20-km (MRI-AGCM3.2S, the 20-km model) and 60-km (MRI-AGCM3.2H, the 60-km model) grid sizes. For the present-day climate of 21 years from 1983 to 2003, models were forced with observed historica...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2018-12, Vol.51 (11-12), p.4601-4617 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4617 |
---|---|
container_issue | 11-12 |
container_start_page | 4601 |
container_title | Climate dynamics |
container_volume | 51 |
creator | Kusunoki, Shoji |
description | We conducted global warming projections using global atmospheric models with high-horizontal resolution of 20-km (MRI-AGCM3.2S, the 20-km model) and 60-km (MRI-AGCM3.2H, the 60-km model) grid sizes. For the present-day climate of 21 years from 1983 to 2003, models were forced with observed historical sea surface temperatures (SST). For the future climate of 21 years from 2079 to 2099, models were forced with future SST distributions projected by the models of the Fifth phase of Couple Model Intercomparison Project (CMIP5). Ensemble simulations for four different SST distributions and three different cumulus convection schemes were conducted to evaluate the uncertainty of projection. The simulations consistently project the increase of precipitation over eastern China for almost all months. In June, precipitation decreases over Japan and increases over the ocean to the south of Japan. The geographical distribution of precipitation change tends to depend relatively on the cumulus convection scheme and horizontal resolution of models rather than on SST distributions. The time evolution of pentad mean precipitation over Japan indicates the delay in the onset of Japanese rainy season in June. This delay can be attributed to the decrease of water vapor transport toward Japan associated with the southward shift of the subtropical high. Change in the subtropical high can be interpreted as the southward shift of the local Hadley circulation. The intensity of precipitation increases over most part of East Asia, while the possibility of drought will increase over Japan, the East China Sea and the area to the south of Japan. |
doi_str_mv | 10.1007/s00382-016-3499-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2139462932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139462932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-78912339af0e28ceacdbf62496d90fc9eb9f433d0047adc6458da4831056b5753</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc-rkYz9yLKWtQosgeg7ZJNtu2XbXJCv035uygidPAzPvO_POg9AjhRkFKJ4DAC8ZAZoTLqQk_ApNqOCpU0pxjSYgOZAiK7JbdBfCAYCKvGATZFdDHLzDZq9POxdwc8K9d6bpm6hj051w9-08XuoQ8Tw0Og27gzPRWVydcdw7vGu7SrdYx2MX-r3zjcHHzroWb99fyXy92PIZu0c3tW6De_itU_S5Wn4sXsjmbf26mG-ISdkjKUpJGedS1-BYaZw2tqpzJmRuJdRGukrWgnMLIAptTS6y0mpRcgpZXqXX-BQ9jXtTyq_BhagO3eBP6aRilEuRM8lZUtFRZXwXgne16n1z1P6sKKgLTDXCVAmmusBUPHnY6AlJm0D5v83_m34AJKp2JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139462932</pqid></control><display><type>article</type><title>Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2</title><source>Springer Nature</source><creator>Kusunoki, Shoji</creator><creatorcontrib>Kusunoki, Shoji</creatorcontrib><description>We conducted global warming projections using global atmospheric models with high-horizontal resolution of 20-km (MRI-AGCM3.2S, the 20-km model) and 60-km (MRI-AGCM3.2H, the 60-km model) grid sizes. For the present-day climate of 21 years from 1983 to 2003, models were forced with observed historical sea surface temperatures (SST). For the future climate of 21 years from 2079 to 2099, models were forced with future SST distributions projected by the models of the Fifth phase of Couple Model Intercomparison Project (CMIP5). Ensemble simulations for four different SST distributions and three different cumulus convection schemes were conducted to evaluate the uncertainty of projection. The simulations consistently project the increase of precipitation over eastern China for almost all months. In June, precipitation decreases over Japan and increases over the ocean to the south of Japan. The geographical distribution of precipitation change tends to depend relatively on the cumulus convection scheme and horizontal resolution of models rather than on SST distributions. The time evolution of pentad mean precipitation over Japan indicates the delay in the onset of Japanese rainy season in June. This delay can be attributed to the decrease of water vapor transport toward Japan associated with the southward shift of the subtropical high. Change in the subtropical high can be interpreted as the southward shift of the local Hadley circulation. The intensity of precipitation increases over most part of East Asia, while the possibility of drought will increase over Japan, the East China Sea and the area to the south of Japan.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-016-3499-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atmospheric models ; Atmospheric precipitations ; Climate ; Climate change ; Climate models ; Climatology ; Clouds ; Computer simulation ; Convection ; Delay ; Drought ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Future climates ; Geographical distribution ; Geophysics/Geodesy ; Global warming ; Hadley circulation ; Historic temperatures ; Intercomparison ; Mean precipitation ; Oceanography ; Precipitation ; Rainy season ; Resolution ; Sea surface ; Sea surface temperature ; Surface temperature ; Water vapor ; Water vapor transport ; Water vapour ; Wet season</subject><ispartof>Climate dynamics, 2018-12, Vol.51 (11-12), p.4601-4617</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Climate Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-78912339af0e28ceacdbf62496d90fc9eb9f433d0047adc6458da4831056b5753</citedby><cites>FETCH-LOGICAL-c382t-78912339af0e28ceacdbf62496d90fc9eb9f433d0047adc6458da4831056b5753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-016-3499-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-016-3499-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kusunoki, Shoji</creatorcontrib><title>Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>We conducted global warming projections using global atmospheric models with high-horizontal resolution of 20-km (MRI-AGCM3.2S, the 20-km model) and 60-km (MRI-AGCM3.2H, the 60-km model) grid sizes. For the present-day climate of 21 years from 1983 to 2003, models were forced with observed historical sea surface temperatures (SST). For the future climate of 21 years from 2079 to 2099, models were forced with future SST distributions projected by the models of the Fifth phase of Couple Model Intercomparison Project (CMIP5). Ensemble simulations for four different SST distributions and three different cumulus convection schemes were conducted to evaluate the uncertainty of projection. The simulations consistently project the increase of precipitation over eastern China for almost all months. In June, precipitation decreases over Japan and increases over the ocean to the south of Japan. The geographical distribution of precipitation change tends to depend relatively on the cumulus convection scheme and horizontal resolution of models rather than on SST distributions. The time evolution of pentad mean precipitation over Japan indicates the delay in the onset of Japanese rainy season in June. This delay can be attributed to the decrease of water vapor transport toward Japan associated with the southward shift of the subtropical high. Change in the subtropical high can be interpreted as the southward shift of the local Hadley circulation. The intensity of precipitation increases over most part of East Asia, while the possibility of drought will increase over Japan, the East China Sea and the area to the south of Japan.</description><subject>Atmospheric models</subject><subject>Atmospheric precipitations</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Delay</subject><subject>Drought</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Future climates</subject><subject>Geographical distribution</subject><subject>Geophysics/Geodesy</subject><subject>Global warming</subject><subject>Hadley circulation</subject><subject>Historic temperatures</subject><subject>Intercomparison</subject><subject>Mean precipitation</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Rainy season</subject><subject>Resolution</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Surface temperature</subject><subject>Water vapor</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Wet season</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc-rkYz9yLKWtQosgeg7ZJNtu2XbXJCv035uygidPAzPvO_POg9AjhRkFKJ4DAC8ZAZoTLqQk_ApNqOCpU0pxjSYgOZAiK7JbdBfCAYCKvGATZFdDHLzDZq9POxdwc8K9d6bpm6hj051w9-08XuoQ8Tw0Og27gzPRWVydcdw7vGu7SrdYx2MX-r3zjcHHzroWb99fyXy92PIZu0c3tW6De_itU_S5Wn4sXsjmbf26mG-ISdkjKUpJGedS1-BYaZw2tqpzJmRuJdRGukrWgnMLIAptTS6y0mpRcgpZXqXX-BQ9jXtTyq_BhagO3eBP6aRilEuRM8lZUtFRZXwXgne16n1z1P6sKKgLTDXCVAmmusBUPHnY6AlJm0D5v83_m34AJKp2JQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Kusunoki, Shoji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20181201</creationdate><title>Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2</title><author>Kusunoki, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-78912339af0e28ceacdbf62496d90fc9eb9f433d0047adc6458da4831056b5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric models</topic><topic>Atmospheric precipitations</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Delay</topic><topic>Drought</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Future climates</topic><topic>Geographical distribution</topic><topic>Geophysics/Geodesy</topic><topic>Global warming</topic><topic>Hadley circulation</topic><topic>Historic temperatures</topic><topic>Intercomparison</topic><topic>Mean precipitation</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Rainy season</topic><topic>Resolution</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Surface temperature</topic><topic>Water vapor</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Wet season</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusunoki, Shoji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusunoki, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>51</volume><issue>11-12</issue><spage>4601</spage><epage>4617</epage><pages>4601-4617</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>We conducted global warming projections using global atmospheric models with high-horizontal resolution of 20-km (MRI-AGCM3.2S, the 20-km model) and 60-km (MRI-AGCM3.2H, the 60-km model) grid sizes. For the present-day climate of 21 years from 1983 to 2003, models were forced with observed historical sea surface temperatures (SST). For the future climate of 21 years from 2079 to 2099, models were forced with future SST distributions projected by the models of the Fifth phase of Couple Model Intercomparison Project (CMIP5). Ensemble simulations for four different SST distributions and three different cumulus convection schemes were conducted to evaluate the uncertainty of projection. The simulations consistently project the increase of precipitation over eastern China for almost all months. In June, precipitation decreases over Japan and increases over the ocean to the south of Japan. The geographical distribution of precipitation change tends to depend relatively on the cumulus convection scheme and horizontal resolution of models rather than on SST distributions. The time evolution of pentad mean precipitation over Japan indicates the delay in the onset of Japanese rainy season in June. This delay can be attributed to the decrease of water vapor transport toward Japan associated with the southward shift of the subtropical high. Change in the subtropical high can be interpreted as the southward shift of the local Hadley circulation. The intensity of precipitation increases over most part of East Asia, while the possibility of drought will increase over Japan, the East China Sea and the area to the south of Japan.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-016-3499-3</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2018-12, Vol.51 (11-12), p.4601-4617 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2139462932 |
source | Springer Nature |
subjects | Atmospheric models Atmospheric precipitations Climate Climate change Climate models Climatology Clouds Computer simulation Convection Delay Drought Earth and Environmental Science Earth Sciences Evolution Future climates Geographical distribution Geophysics/Geodesy Global warming Hadley circulation Historic temperatures Intercomparison Mean precipitation Oceanography Precipitation Rainy season Resolution Sea surface Sea surface temperature Surface temperature Water vapor Water vapor transport Water vapour Wet season |
title | Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Future%20changes%20in%20precipitation%20over%20East%20Asia%20projected%20by%20the%20global%20atmospheric%20model%20MRI-AGCM3.2&rft.jtitle=Climate%20dynamics&rft.au=Kusunoki,%20Shoji&rft.date=2018-12-01&rft.volume=51&rft.issue=11-12&rft.spage=4601&rft.epage=4617&rft.pages=4601-4617&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-016-3499-3&rft_dat=%3Cproquest_cross%3E2139462932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139462932&rft_id=info:pmid/&rfr_iscdi=true |