Study on the metabolites of DH-e, a Halomonas marine bacterium, against three toxic dinoflagellate species

Algicidal bacteria play an important role in mitigating harmful algal blooms (HABs). In the study, five bacterial strains were isolated from the East China Sea. One strain of algicidal bacterium, named DH-e, was found to selectively inhibit the motor ability of Prorocentrum donghaiense, Alexandrium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2018-11, Vol.78 (7), p.1535-1544
Hauptverfasser: Wang, Di, Xie, Liling, Zhu, Xingbiao, Bi, Xiao, Zheng, Yuzhong, Zhu, Yankun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Algicidal bacteria play an important role in mitigating harmful algal blooms (HABs). In the study, five bacterial strains were isolated from the East China Sea. One strain of algicidal bacterium, named DH-e, was found to selectively inhibit the motor ability of Prorocentrum donghaiense, Alexandrium tamarense (ATDH-47) and Karenia mikimotoi Hansen. Both 16S rDNA sequence analysis and morphological characteristics revealed that the algicidal DH-e bacterium belonged to Halomonas. Furthermore, results showed that the metabolites in the DH-e cell-free filtrate could kill algae directly, and the minimum inhibitory concentrations (MICs) of the bacterial metabolites on the cells of the three dinoflagellate species ranged from 35.0-70.0 μg/mL. Following short-term inhibitory tests, the dinoflagellates in mixed crude extract solution (0.7 mg/mL) ceased movement after 5 min. The algicidal mechanism of the metabolites was investigated through enzyme activities, including that of catalase (CAT), alkaline phosphatase (AKP), acetone peroxide (T-ATP) synthetase and nitrite reductase (NR). Results indicated that metabolites did not disrupt the energy or nutrient routes of the algae (P > 0.05), but did initiate an increase in free radicals in the algal cells, which might explain the subsequent death of sensitive algae. Thus, the metabolites of the DH-e bacterium showed promising potential for controlling HABs.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2018.426