Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method
The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t −3∕2 long-time tail decay only for non-polar liquid toluene, while the spectra of...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2020-02, Vol.91 (11), Article 293 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 91 |
creator | Stepišnik, Janez Mattea, Carlos Stapf, Siegfried Mohorič, Aleš |
description | The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a
t
−3∕2
long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations. |
doi_str_mv | 10.1140/epjb/e2018-90284-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2139133342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582203713</galeid><sourcerecordid>A582203713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-3c8a20d209b47c869a6ec8a51910cb1c5f65da4a8a52e85579fa7784082dc2823</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoqKN_wFXAlYtqXm3TpYgvcBRf65Cmt2OGTjMmqTj_3owjPjYqd5HL4TvnQg5Ce5QcUirIEcyn9REwQmVWESZFJtbQFhVcZAXhxfrnzuQm2g5hSgihBRVb6HbsOjBDpz1-gc4ZGxdYD9FlxnkPnY7W9di1ONjZvAPc2efBNgG7OoB_gQbXC3w9vsPj8_tTPIP45JodtNHqLsDuxztCj2enDycX2dXN-eXJ8VVmclLFjBupGWkYqWpRGllUuoAk5bSixNTU5G2RN1roJDGQeV5WrS5LKYhkjWGS8RHaX-XOvXseIEQ1dYPv00nFKK8o51wsqcMVNdEdKNu3Lnpt0jQws8b10NqkHxeSM05p8W9DLhkjvExXRujghyExEV7jRA8hqMv7u5_hf7Hfc9mKNd6F4KFVc29n2i8UJWpZulqWrt5LV--lK5FMfGUKCe4n4L8-5RfXG4hjrdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139133342</pqid></control><display><type>article</type><title>Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method</title><source>SpringerLink Journals</source><creator>Stepišnik, Janez ; Mattea, Carlos ; Stapf, Siegfried ; Mohorič, Aleš</creator><creatorcontrib>Stepišnik, Janez ; Mattea, Carlos ; Stapf, Siegfried ; Mohorič, Aleš</creatorcontrib><description>The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a
t
−3∕2
long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2018-90284-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autocorrelation ; Chain dynamics ; Complex Systems ; Condensed Matter Physics ; Diagnostic imaging ; Echoes ; Ethanol ; Fluid- and Aerodynamics ; Glycerol ; Heterogeneity ; Liquids ; Molecular motion ; NMR ; Nuclear magnetic resonance ; Particle decay ; Particle trajectories ; Physics ; Physics and Astronomy ; Regular Article ; Self diffusion ; Solid State Physics ; Toluene ; Variations</subject><ispartof>The European physical journal. B, Condensed matter physics, 2020-02, Vol.91 (11), Article 293</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>COPYRIGHT 2020 Springer</rights><rights>This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-3c8a20d209b47c869a6ec8a51910cb1c5f65da4a8a52e85579fa7784082dc2823</citedby><cites>FETCH-LOGICAL-c509t-3c8a20d209b47c869a6ec8a51910cb1c5f65da4a8a52e85579fa7784082dc2823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2018-90284-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2018-90284-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Stepišnik, Janez</creatorcontrib><creatorcontrib>Mattea, Carlos</creatorcontrib><creatorcontrib>Stapf, Siegfried</creatorcontrib><creatorcontrib>Mohorič, Aleš</creatorcontrib><title>Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a
t
−3∕2
long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.</description><subject>Autocorrelation</subject><subject>Chain dynamics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Diagnostic imaging</subject><subject>Echoes</subject><subject>Ethanol</subject><subject>Fluid- and Aerodynamics</subject><subject>Glycerol</subject><subject>Heterogeneity</subject><subject>Liquids</subject><subject>Molecular motion</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Particle decay</subject><subject>Particle trajectories</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Self diffusion</subject><subject>Solid State Physics</subject><subject>Toluene</subject><subject>Variations</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqNkUtLxDAUhYMoqKN_wFXAlYtqXm3TpYgvcBRf65Cmt2OGTjMmqTj_3owjPjYqd5HL4TvnQg5Ce5QcUirIEcyn9REwQmVWESZFJtbQFhVcZAXhxfrnzuQm2g5hSgihBRVb6HbsOjBDpz1-gc4ZGxdYD9FlxnkPnY7W9di1ONjZvAPc2efBNgG7OoB_gQbXC3w9vsPj8_tTPIP45JodtNHqLsDuxztCj2enDycX2dXN-eXJ8VVmclLFjBupGWkYqWpRGllUuoAk5bSixNTU5G2RN1roJDGQeV5WrS5LKYhkjWGS8RHaX-XOvXseIEQ1dYPv00nFKK8o51wsqcMVNdEdKNu3Lnpt0jQws8b10NqkHxeSM05p8W9DLhkjvExXRujghyExEV7jRA8hqMv7u5_hf7Hfc9mKNd6F4KFVc29n2i8UJWpZulqWrt5LV--lK5FMfGUKCe4n4L8-5RfXG4hjrdk</recordid><startdate>20200213</startdate><enddate>20200213</enddate><creator>Stepišnik, Janez</creator><creator>Mattea, Carlos</creator><creator>Stapf, Siegfried</creator><creator>Mohorič, Aleš</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200213</creationdate><title>Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method</title><author>Stepišnik, Janez ; Mattea, Carlos ; Stapf, Siegfried ; Mohorič, Aleš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-3c8a20d209b47c869a6ec8a51910cb1c5f65da4a8a52e85579fa7784082dc2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autocorrelation</topic><topic>Chain dynamics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Diagnostic imaging</topic><topic>Echoes</topic><topic>Ethanol</topic><topic>Fluid- and Aerodynamics</topic><topic>Glycerol</topic><topic>Heterogeneity</topic><topic>Liquids</topic><topic>Molecular motion</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Particle decay</topic><topic>Particle trajectories</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Self diffusion</topic><topic>Solid State Physics</topic><topic>Toluene</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepišnik, Janez</creatorcontrib><creatorcontrib>Mattea, Carlos</creatorcontrib><creatorcontrib>Stapf, Siegfried</creatorcontrib><creatorcontrib>Mohorič, Aleš</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepišnik, Janez</au><au>Mattea, Carlos</au><au>Stapf, Siegfried</au><au>Mohorič, Aleš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2020-02-13</date><risdate>2020</risdate><volume>91</volume><issue>11</issue><artnum>293</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a
t
−3∕2
long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2018-90284-4</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2020-02, Vol.91 (11), Article 293 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2139133342 |
source | SpringerLink Journals |
subjects | Autocorrelation Chain dynamics Complex Systems Condensed Matter Physics Diagnostic imaging Echoes Ethanol Fluid- and Aerodynamics Glycerol Heterogeneity Liquids Molecular motion NMR Nuclear magnetic resonance Particle decay Particle trajectories Physics Physics and Astronomy Regular Article Self diffusion Solid State Physics Toluene Variations |
title | Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20velocity%20auto-correlation%20of%20simple%20liquids%20observed%20by%20NMR%20MGSE%20method&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Stepi%C5%A1nik,%20Janez&rft.date=2020-02-13&rft.volume=91&rft.issue=11&rft.artnum=293&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2018-90284-4&rft_dat=%3Cgale_proqu%3EA582203713%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139133342&rft_id=info:pmid/&rft_galeid=A582203713&rfr_iscdi=true |