Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t −3∕2 long-time tail decay only for non-polar liquid toluene, while the spectra of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2020-02, Vol.91 (11), Article 293
Hauptverfasser: Stepišnik, Janez, Mattea, Carlos, Stapf, Siegfried, Mohorič, Aleš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 91
creator Stepišnik, Janez
Mattea, Carlos
Stapf, Siegfried
Mohorič, Aleš
description The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t −3∕2 long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.
doi_str_mv 10.1140/epjb/e2018-90284-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2139133342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582203713</galeid><sourcerecordid>A582203713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-3c8a20d209b47c869a6ec8a51910cb1c5f65da4a8a52e85579fa7784082dc2823</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoqKN_wFXAlYtqXm3TpYgvcBRf65Cmt2OGTjMmqTj_3owjPjYqd5HL4TvnQg5Ce5QcUirIEcyn9REwQmVWESZFJtbQFhVcZAXhxfrnzuQm2g5hSgihBRVb6HbsOjBDpz1-gc4ZGxdYD9FlxnkPnY7W9di1ONjZvAPc2efBNgG7OoB_gQbXC3w9vsPj8_tTPIP45JodtNHqLsDuxztCj2enDycX2dXN-eXJ8VVmclLFjBupGWkYqWpRGllUuoAk5bSixNTU5G2RN1roJDGQeV5WrS5LKYhkjWGS8RHaX-XOvXseIEQ1dYPv00nFKK8o51wsqcMVNdEdKNu3Lnpt0jQws8b10NqkHxeSM05p8W9DLhkjvExXRujghyExEV7jRA8hqMv7u5_hf7Hfc9mKNd6F4KFVc29n2i8UJWpZulqWrt5LV--lK5FMfGUKCe4n4L8-5RfXG4hjrdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139133342</pqid></control><display><type>article</type><title>Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method</title><source>SpringerLink Journals</source><creator>Stepišnik, Janez ; Mattea, Carlos ; Stapf, Siegfried ; Mohorič, Aleš</creator><creatorcontrib>Stepišnik, Janez ; Mattea, Carlos ; Stapf, Siegfried ; Mohorič, Aleš</creatorcontrib><description>The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t −3∕2 long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2018-90284-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autocorrelation ; Chain dynamics ; Complex Systems ; Condensed Matter Physics ; Diagnostic imaging ; Echoes ; Ethanol ; Fluid- and Aerodynamics ; Glycerol ; Heterogeneity ; Liquids ; Molecular motion ; NMR ; Nuclear magnetic resonance ; Particle decay ; Particle trajectories ; Physics ; Physics and Astronomy ; Regular Article ; Self diffusion ; Solid State Physics ; Toluene ; Variations</subject><ispartof>The European physical journal. B, Condensed matter physics, 2020-02, Vol.91 (11), Article 293</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>COPYRIGHT 2020 Springer</rights><rights>This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-3c8a20d209b47c869a6ec8a51910cb1c5f65da4a8a52e85579fa7784082dc2823</citedby><cites>FETCH-LOGICAL-c509t-3c8a20d209b47c869a6ec8a51910cb1c5f65da4a8a52e85579fa7784082dc2823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2018-90284-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2018-90284-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Stepišnik, Janez</creatorcontrib><creatorcontrib>Mattea, Carlos</creatorcontrib><creatorcontrib>Stapf, Siegfried</creatorcontrib><creatorcontrib>Mohorič, Aleš</creatorcontrib><title>Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t −3∕2 long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.</description><subject>Autocorrelation</subject><subject>Chain dynamics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Diagnostic imaging</subject><subject>Echoes</subject><subject>Ethanol</subject><subject>Fluid- and Aerodynamics</subject><subject>Glycerol</subject><subject>Heterogeneity</subject><subject>Liquids</subject><subject>Molecular motion</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Particle decay</subject><subject>Particle trajectories</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Self diffusion</subject><subject>Solid State Physics</subject><subject>Toluene</subject><subject>Variations</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqNkUtLxDAUhYMoqKN_wFXAlYtqXm3TpYgvcBRf65Cmt2OGTjMmqTj_3owjPjYqd5HL4TvnQg5Ce5QcUirIEcyn9REwQmVWESZFJtbQFhVcZAXhxfrnzuQm2g5hSgihBRVb6HbsOjBDpz1-gc4ZGxdYD9FlxnkPnY7W9di1ONjZvAPc2efBNgG7OoB_gQbXC3w9vsPj8_tTPIP45JodtNHqLsDuxztCj2enDycX2dXN-eXJ8VVmclLFjBupGWkYqWpRGllUuoAk5bSixNTU5G2RN1roJDGQeV5WrS5LKYhkjWGS8RHaX-XOvXseIEQ1dYPv00nFKK8o51wsqcMVNdEdKNu3Lnpt0jQws8b10NqkHxeSM05p8W9DLhkjvExXRujghyExEV7jRA8hqMv7u5_hf7Hfc9mKNd6F4KFVc29n2i8UJWpZulqWrt5LV--lK5FMfGUKCe4n4L8-5RfXG4hjrdk</recordid><startdate>20200213</startdate><enddate>20200213</enddate><creator>Stepišnik, Janez</creator><creator>Mattea, Carlos</creator><creator>Stapf, Siegfried</creator><creator>Mohorič, Aleš</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200213</creationdate><title>Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method</title><author>Stepišnik, Janez ; Mattea, Carlos ; Stapf, Siegfried ; Mohorič, Aleš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-3c8a20d209b47c869a6ec8a51910cb1c5f65da4a8a52e85579fa7784082dc2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autocorrelation</topic><topic>Chain dynamics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Diagnostic imaging</topic><topic>Echoes</topic><topic>Ethanol</topic><topic>Fluid- and Aerodynamics</topic><topic>Glycerol</topic><topic>Heterogeneity</topic><topic>Liquids</topic><topic>Molecular motion</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Particle decay</topic><topic>Particle trajectories</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Self diffusion</topic><topic>Solid State Physics</topic><topic>Toluene</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepišnik, Janez</creatorcontrib><creatorcontrib>Mattea, Carlos</creatorcontrib><creatorcontrib>Stapf, Siegfried</creatorcontrib><creatorcontrib>Mohorič, Aleš</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepišnik, Janez</au><au>Mattea, Carlos</au><au>Stapf, Siegfried</au><au>Mohorič, Aleš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2020-02-13</date><risdate>2020</risdate><volume>91</volume><issue>11</issue><artnum>293</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t −3∕2 long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2018-90284-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2020-02, Vol.91 (11), Article 293
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2139133342
source SpringerLink Journals
subjects Autocorrelation
Chain dynamics
Complex Systems
Condensed Matter Physics
Diagnostic imaging
Echoes
Ethanol
Fluid- and Aerodynamics
Glycerol
Heterogeneity
Liquids
Molecular motion
NMR
Nuclear magnetic resonance
Particle decay
Particle trajectories
Physics
Physics and Astronomy
Regular Article
Self diffusion
Solid State Physics
Toluene
Variations
title Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20velocity%20auto-correlation%20of%20simple%20liquids%20observed%20by%20NMR%20MGSE%20method&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Stepi%C5%A1nik,%20Janez&rft.date=2020-02-13&rft.volume=91&rft.issue=11&rft.artnum=293&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2018-90284-4&rft_dat=%3Cgale_proqu%3EA582203713%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139133342&rft_id=info:pmid/&rft_galeid=A582203713&rfr_iscdi=true