On the Extrapolation of Perturbation Series

We discuss certain special cases of algebraic approximants that are given as zeroes of so-called effective characteristic polynomials and their generalization to a multiseries setting. These approximants are useful for the convergence acceleration or summation of quantum mechanical perturbation seri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2000-05, Vol.61 (1-3), p.133
1. Verfasser: Homeier, Herbert H H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1-3
container_start_page 133
container_title Acta applicandae mathematicae
container_volume 61
creator Homeier, Herbert H H
description We discuss certain special cases of algebraic approximants that are given as zeroes of so-called effective characteristic polynomials and their generalization to a multiseries setting. These approximants are useful for the convergence acceleration or summation of quantum mechanical perturbation series. Examples are given and some properties discussed. [PUBLICATION ABSTARCT]
doi_str_mv 10.1023/a:1006493830706
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_213904736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>476991201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-24f2e712d4c4be3eb05900f0d19839bdb665f402202d0a60d5c78921905070393</originalsourceid><addsrcrecordid>eNotjk1Lw0AURQdRMFbXboNbid55bzKT505Kq0Khgrou-ZhgS8nUyQT8-Rbq6nI251ylbjUeNIgf6ycNWCNcMRzsmcp06agQsD1XGbR1RQUtl-pqHHcAWKzN1P16yNO3zxe_KdaHsK_TNgx56PN3H9MUmxN_-Lj147W66Ov96G_-d6a-lovP-WuxWr-8zZ9XRUtkU0GmJ-80daY1jWffoBSgR6elYmm6xtqyNyACdagturJ1lZAWlMfjLDxTdyfvIYafyY9pswtTHI7JDWkWGMeW_wBLIEG_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213904736</pqid></control><display><type>article</type><title>On the Extrapolation of Perturbation Series</title><source>SpringerLink Journals</source><creator>Homeier, Herbert H H</creator><creatorcontrib>Homeier, Herbert H H</creatorcontrib><description>We discuss certain special cases of algebraic approximants that are given as zeroes of so-called effective characteristic polynomials and their generalization to a multiseries setting. These approximants are useful for the convergence acceleration or summation of quantum mechanical perturbation series. Examples are given and some properties discussed. [PUBLICATION ABSTARCT]</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1023/a:1006493830706</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algebra ; Algorithms ; Approximation ; Eigenvalues ; Mathematics ; Polynomials ; Power ; Quantum physics ; Studies ; Theory</subject><ispartof>Acta applicandae mathematicae, 2000-05, Vol.61 (1-3), p.133</ispartof><rights>Copyright (c) 2000 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-24f2e712d4c4be3eb05900f0d19839bdb665f402202d0a60d5c78921905070393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Homeier, Herbert H H</creatorcontrib><title>On the Extrapolation of Perturbation Series</title><title>Acta applicandae mathematicae</title><description>We discuss certain special cases of algebraic approximants that are given as zeroes of so-called effective characteristic polynomials and their generalization to a multiseries setting. These approximants are useful for the convergence acceleration or summation of quantum mechanical perturbation series. Examples are given and some properties discussed. [PUBLICATION ABSTARCT]</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Power</subject><subject>Quantum physics</subject><subject>Studies</subject><subject>Theory</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotjk1Lw0AURQdRMFbXboNbid55bzKT505Kq0Khgrou-ZhgS8nUyQT8-Rbq6nI251ylbjUeNIgf6ycNWCNcMRzsmcp06agQsD1XGbR1RQUtl-pqHHcAWKzN1P16yNO3zxe_KdaHsK_TNgx56PN3H9MUmxN_-Lj147W66Ov96G_-d6a-lovP-WuxWr-8zZ9XRUtkU0GmJ-80daY1jWffoBSgR6elYmm6xtqyNyACdagturJ1lZAWlMfjLDxTdyfvIYafyY9pswtTHI7JDWkWGMeW_wBLIEG_</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Homeier, Herbert H H</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20000501</creationdate><title>On the Extrapolation of Perturbation Series</title><author>Homeier, Herbert H H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-24f2e712d4c4be3eb05900f0d19839bdb665f402202d0a60d5c78921905070393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Power</topic><topic>Quantum physics</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homeier, Herbert H H</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homeier, Herbert H H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Extrapolation of Perturbation Series</atitle><jtitle>Acta applicandae mathematicae</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>61</volume><issue>1-3</issue><spage>133</spage><pages>133-</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>We discuss certain special cases of algebraic approximants that are given as zeroes of so-called effective characteristic polynomials and their generalization to a multiseries setting. These approximants are useful for the convergence acceleration or summation of quantum mechanical perturbation series. Examples are given and some properties discussed. [PUBLICATION ABSTARCT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/a:1006493830706</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2000-05, Vol.61 (1-3), p.133
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_213904736
source SpringerLink Journals
subjects Algebra
Algorithms
Approximation
Eigenvalues
Mathematics
Polynomials
Power
Quantum physics
Studies
Theory
title On the Extrapolation of Perturbation Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Extrapolation%20of%20Perturbation%20Series&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Homeier,%20Herbert%20H%20H&rft.date=2000-05-01&rft.volume=61&rft.issue=1-3&rft.spage=133&rft.pages=133-&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1023/a:1006493830706&rft_dat=%3Cproquest%3E476991201%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213904736&rft_id=info:pmid/&rfr_iscdi=true