Asymptotic Density of Surds with Stable Height

We investigate the asymptotic density of surds, namely, the numbers of the form m1/d with positive integers m and d such that their height is equal to their metric height among all surds. It is shown that, given an integer d[> or =, slanted]2, this density is equal to 6/[pi]2. Moreover, similar r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2003-08, Vol.78 (1-3), p.99
1. Verfasser: Dubickas, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1-3
container_start_page 99
container_title Acta applicandae mathematicae
container_volume 78
creator Dubickas, A
description We investigate the asymptotic density of surds, namely, the numbers of the form m1/d with positive integers m and d such that their height is equal to their metric height among all surds. It is shown that, given an integer d[> or =, slanted]2, this density is equal to 6/[pi]2. Moreover, similar results for some fixed m are also obtained. [PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1025736121861
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_213902922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>423057241</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-529d2e9d7f8d5e7979424136873c4bbce4008a1fb9924af38be569544667a7083</originalsourceid><addsrcrecordid>eNotzUtLw0AUQOFBFIzVtdvBfeq9d57XXaiPCgUX1XXJY2JTahMzE6T_3oKuvt05QtwizBFI3RcPJ4xTFgm9xTORoXGUMyh7LjJA63IPyJfiKsYdACi2NhPzIh6_htSnrpaP4RC7dJR9K9fT2ET506WtXKey2ge5DN3nNl2Li7bcx3Dz70x8PD-9L5b56u3ldVGs8gE9pNwQNxS4ca1vTHDsWJNGZb1Tta6qOmgAX2JbMZMuW-WrYCwbra11pQOvZuLurzuM_fcUYtrs-mk8nJYbQsVATKR-ARVdQvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213902922</pqid></control><display><type>article</type><title>Asymptotic Density of Surds with Stable Height</title><source>SpringerNature Journals</source><creator>Dubickas, A</creator><creatorcontrib>Dubickas, A</creatorcontrib><description>We investigate the asymptotic density of surds, namely, the numbers of the form m1/d with positive integers m and d such that their height is equal to their metric height among all surds. It is shown that, given an integer d[&gt; or =, slanted]2, this density is equal to 6/[pi]2. Moreover, similar results for some fixed m are also obtained. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1023/A:1025736121861</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algebra ; Mathematical models ; Mathematics ; Prime numbers ; Studies ; Theory</subject><ispartof>Acta applicandae mathematicae, 2003-08, Vol.78 (1-3), p.99</ispartof><rights>Copyright (c) 2003 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Dubickas, A</creatorcontrib><title>Asymptotic Density of Surds with Stable Height</title><title>Acta applicandae mathematicae</title><description>We investigate the asymptotic density of surds, namely, the numbers of the form m1/d with positive integers m and d such that their height is equal to their metric height among all surds. It is shown that, given an integer d[&gt; or =, slanted]2, this density is equal to 6/[pi]2. Moreover, similar results for some fixed m are also obtained. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Prime numbers</subject><subject>Studies</subject><subject>Theory</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotzUtLw0AUQOFBFIzVtdvBfeq9d57XXaiPCgUX1XXJY2JTahMzE6T_3oKuvt05QtwizBFI3RcPJ4xTFgm9xTORoXGUMyh7LjJA63IPyJfiKsYdACi2NhPzIh6_htSnrpaP4RC7dJR9K9fT2ET506WtXKey2ge5DN3nNl2Li7bcx3Dz70x8PD-9L5b56u3ldVGs8gE9pNwQNxS4ca1vTHDsWJNGZb1Tta6qOmgAX2JbMZMuW-WrYCwbra11pQOvZuLurzuM_fcUYtrs-mk8nJYbQsVATKR-ARVdQvE</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Dubickas, A</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030801</creationdate><title>Asymptotic Density of Surds with Stable Height</title><author>Dubickas, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-529d2e9d7f8d5e7979424136873c4bbce4008a1fb9924af38be569544667a7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebra</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Prime numbers</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubickas, A</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubickas, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Density of Surds with Stable Height</atitle><jtitle>Acta applicandae mathematicae</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>78</volume><issue>1-3</issue><spage>99</spage><pages>99-</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>We investigate the asymptotic density of surds, namely, the numbers of the form m1/d with positive integers m and d such that their height is equal to their metric height among all surds. It is shown that, given an integer d[&gt; or =, slanted]2, this density is equal to 6/[pi]2. Moreover, similar results for some fixed m are also obtained. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1025736121861</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2003-08, Vol.78 (1-3), p.99
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_213902922
source SpringerNature Journals
subjects Algebra
Mathematical models
Mathematics
Prime numbers
Studies
Theory
title Asymptotic Density of Surds with Stable Height
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Density%20of%20Surds%20with%20Stable%20Height&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Dubickas,%20A&rft.date=2003-08-01&rft.volume=78&rft.issue=1-3&rft.spage=99&rft.pages=99-&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1023/A:1025736121861&rft_dat=%3Cproquest%3E423057241%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213902922&rft_id=info:pmid/&rfr_iscdi=true