Optimal chemotherapy and immunotherapy schedules for a cancer‐obesity model with Caputo time fractional derivative
This work presents a new mathematical model to depict the effect of obesity on cancerous tumor growth when chemotherapy and immunotherapy have been administered. We consider an optimal control problem to destroy the tumor population and minimize the drug dose over a finite time interval. The constra...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2018-12, Vol.41 (18), p.9390-9407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9407 |
---|---|
container_issue | 18 |
container_start_page | 9390 |
container_title | Mathematical methods in the applied sciences |
container_volume | 41 |
creator | Akman Yıldız, Tuğba Arshad, Sadia Baleanu, Dumitru |
description | This work presents a new mathematical model to depict the effect of obesity on cancerous tumor growth when chemotherapy and immunotherapy have been administered. We consider an optimal control problem to destroy the tumor population and minimize the drug dose over a finite time interval. The constraint is a model including tumor cells, immune cells, fat cells, and chemotherapeutic and immunotherapeutic drug concentrations with the Caputo time fractional derivative. We investigate the existence and stability of the equilibrium points, namely, tumor‐free equilibrium and coexisting equilibrium, analytically. We discretize the cancer‐obesity model using the L1 method. Simulation results of the proposed model are presented to compare three different treatment strategies: chemotherapy, immunotherapy, and their combination. In addition, we investigate the effect of the differentiation order α and the value of the decay rate of the amount of chemotherapeutic drug to the value of the cost functional. We find out the optimal treatment schedule in case of chemotherapy and immunotherapy. |
doi_str_mv | 10.1002/mma.5298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2139012698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139012698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-255fdb9b23a27a24e14beef11873b53be4e03747b8c0248fc806b51462be911f3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8TjOa1lVvKSibmBt2c5ETZXEwXZadccn8I18CSlF7FiNdOfozugQcg1sBozxu7ZVs4QX-QmZACuKCESWnpIJg4xFgoM4JxfebxhjOQCfkLDqQ92qhpo1tjas0al-T1VX0rpth-4v8eO-HBr0tLKOKmpUZ9B9fXxajb4Oe9raEhu6q8OaLlQ_BEvHXqSVUybUthsvlOjqrQr1Fi_JWaUaj1e_c0reHu5fF0_RcvX4vJgvI8OLOI94klSlLjSPFc8UFwhCI1YAeRbrJNYokMWZyHRuGBd5ZXKW6gREyjUWAFU8JTfH3t7Z9wF9kBs7uPEXLznEBQOeFvlI3R4p46z3DivZu1GJ20tg8uBUjk7lwemIRkd0Vze4_5eTLy_zH_4bwnF6tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139012698</pqid></control><display><type>article</type><title>Optimal chemotherapy and immunotherapy schedules for a cancer‐obesity model with Caputo time fractional derivative</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Akman Yıldız, Tuğba ; Arshad, Sadia ; Baleanu, Dumitru</creator><creatorcontrib>Akman Yıldız, Tuğba ; Arshad, Sadia ; Baleanu, Dumitru</creatorcontrib><description>This work presents a new mathematical model to depict the effect of obesity on cancerous tumor growth when chemotherapy and immunotherapy have been administered. We consider an optimal control problem to destroy the tumor population and minimize the drug dose over a finite time interval. The constraint is a model including tumor cells, immune cells, fat cells, and chemotherapeutic and immunotherapeutic drug concentrations with the Caputo time fractional derivative. We investigate the existence and stability of the equilibrium points, namely, tumor‐free equilibrium and coexisting equilibrium, analytically. We discretize the cancer‐obesity model using the L1 method. Simulation results of the proposed model are presented to compare three different treatment strategies: chemotherapy, immunotherapy, and their combination. In addition, we investigate the effect of the differentiation order α and the value of the decay rate of the amount of chemotherapeutic drug to the value of the cost functional. We find out the optimal treatment schedule in case of chemotherapy and immunotherapy.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5298</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Cancer ; Chemotherapy ; Computer simulation ; Constraint modelling ; Decay rate ; Equilibrium ; fractional differential equations ; Immune system ; Immunotherapy ; Obesity ; Optimal control ; Schedules ; stability ; Tumors</subject><ispartof>Mathematical methods in the applied sciences, 2018-12, Vol.41 (18), p.9390-9407</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-255fdb9b23a27a24e14beef11873b53be4e03747b8c0248fc806b51462be911f3</citedby><cites>FETCH-LOGICAL-c2938-255fdb9b23a27a24e14beef11873b53be4e03747b8c0248fc806b51462be911f3</cites><orcidid>0000-0003-1206-2287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5298$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5298$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Akman Yıldız, Tuğba</creatorcontrib><creatorcontrib>Arshad, Sadia</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><title>Optimal chemotherapy and immunotherapy schedules for a cancer‐obesity model with Caputo time fractional derivative</title><title>Mathematical methods in the applied sciences</title><description>This work presents a new mathematical model to depict the effect of obesity on cancerous tumor growth when chemotherapy and immunotherapy have been administered. We consider an optimal control problem to destroy the tumor population and minimize the drug dose over a finite time interval. The constraint is a model including tumor cells, immune cells, fat cells, and chemotherapeutic and immunotherapeutic drug concentrations with the Caputo time fractional derivative. We investigate the existence and stability of the equilibrium points, namely, tumor‐free equilibrium and coexisting equilibrium, analytically. We discretize the cancer‐obesity model using the L1 method. Simulation results of the proposed model are presented to compare three different treatment strategies: chemotherapy, immunotherapy, and their combination. In addition, we investigate the effect of the differentiation order α and the value of the decay rate of the amount of chemotherapeutic drug to the value of the cost functional. We find out the optimal treatment schedule in case of chemotherapy and immunotherapy.</description><subject>Cancer</subject><subject>Chemotherapy</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Decay rate</subject><subject>Equilibrium</subject><subject>fractional differential equations</subject><subject>Immune system</subject><subject>Immunotherapy</subject><subject>Obesity</subject><subject>Optimal control</subject><subject>Schedules</subject><subject>stability</subject><subject>Tumors</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8TjOa1lVvKSibmBt2c5ETZXEwXZadccn8I18CSlF7FiNdOfozugQcg1sBozxu7ZVs4QX-QmZACuKCESWnpIJg4xFgoM4JxfebxhjOQCfkLDqQ92qhpo1tjas0al-T1VX0rpth-4v8eO-HBr0tLKOKmpUZ9B9fXxajb4Oe9raEhu6q8OaLlQ_BEvHXqSVUybUthsvlOjqrQr1Fi_JWaUaj1e_c0reHu5fF0_RcvX4vJgvI8OLOI94klSlLjSPFc8UFwhCI1YAeRbrJNYokMWZyHRuGBd5ZXKW6gREyjUWAFU8JTfH3t7Z9wF9kBs7uPEXLznEBQOeFvlI3R4p46z3DivZu1GJ20tg8uBUjk7lwemIRkd0Vze4_5eTLy_zH_4bwnF6tA</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Akman Yıldız, Tuğba</creator><creator>Arshad, Sadia</creator><creator>Baleanu, Dumitru</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1206-2287</orcidid></search><sort><creationdate>201812</creationdate><title>Optimal chemotherapy and immunotherapy schedules for a cancer‐obesity model with Caputo time fractional derivative</title><author>Akman Yıldız, Tuğba ; Arshad, Sadia ; Baleanu, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-255fdb9b23a27a24e14beef11873b53be4e03747b8c0248fc806b51462be911f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cancer</topic><topic>Chemotherapy</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Decay rate</topic><topic>Equilibrium</topic><topic>fractional differential equations</topic><topic>Immune system</topic><topic>Immunotherapy</topic><topic>Obesity</topic><topic>Optimal control</topic><topic>Schedules</topic><topic>stability</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akman Yıldız, Tuğba</creatorcontrib><creatorcontrib>Arshad, Sadia</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akman Yıldız, Tuğba</au><au>Arshad, Sadia</au><au>Baleanu, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal chemotherapy and immunotherapy schedules for a cancer‐obesity model with Caputo time fractional derivative</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-12</date><risdate>2018</risdate><volume>41</volume><issue>18</issue><spage>9390</spage><epage>9407</epage><pages>9390-9407</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This work presents a new mathematical model to depict the effect of obesity on cancerous tumor growth when chemotherapy and immunotherapy have been administered. We consider an optimal control problem to destroy the tumor population and minimize the drug dose over a finite time interval. The constraint is a model including tumor cells, immune cells, fat cells, and chemotherapeutic and immunotherapeutic drug concentrations with the Caputo time fractional derivative. We investigate the existence and stability of the equilibrium points, namely, tumor‐free equilibrium and coexisting equilibrium, analytically. We discretize the cancer‐obesity model using the L1 method. Simulation results of the proposed model are presented to compare three different treatment strategies: chemotherapy, immunotherapy, and their combination. In addition, we investigate the effect of the differentiation order α and the value of the decay rate of the amount of chemotherapeutic drug to the value of the cost functional. We find out the optimal treatment schedule in case of chemotherapy and immunotherapy.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5298</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1206-2287</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2018-12, Vol.41 (18), p.9390-9407 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2139012698 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cancer Chemotherapy Computer simulation Constraint modelling Decay rate Equilibrium fractional differential equations Immune system Immunotherapy Obesity Optimal control Schedules stability Tumors |
title | Optimal chemotherapy and immunotherapy schedules for a cancer‐obesity model with Caputo time fractional derivative |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20chemotherapy%20and%20immunotherapy%20schedules%20for%20a%20cancer%E2%80%90obesity%20model%20with%20Caputo%20time%20fractional%20derivative&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Akman%20Y%C4%B1ld%C4%B1z,%20Tu%C4%9Fba&rft.date=2018-12&rft.volume=41&rft.issue=18&rft.spage=9390&rft.epage=9407&rft.pages=9390-9407&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5298&rft_dat=%3Cproquest_cross%3E2139012698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139012698&rft_id=info:pmid/&rfr_iscdi=true |