Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites
A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibri...
Gespeichert in:
Veröffentlicht in: | Journal of spacecraft and rockets 2016-09, Vol.53 (5), p.930-935 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 5 |
container_start_page | 930 |
container_title | Journal of spacecraft and rockets |
container_volume | 53 |
creator | Meng, Songhe Zhou, Yinjia Xie, Weihua Yi, Fajun Du, Shanyi |
description | A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibrium gas–surface interactions, and then the computational fluid dynamics solver was coupled with a thermal analysis, finite element method solver. The gas and solid regions were coupled at the surface by appropriate energy and mass balances. A mesh movement algorithm was implemented in the finite element method to achieve surface recession. The capabilities of this coupled method were demonstrated by simulating the thermal and ablation behaviors of a wedge-shaped leading edge in hypersonic flows. The effect of the nose shape change on the ablation process was also discussed. The coupling method developed in this work could be used to simulate aerothermodynamics and carbon ablation during Earth reentry. |
doi_str_mv | 10.2514/1.A33612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2138701377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138701377</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-cf10d3c456be939c06b1a1a6fa309a0fda88ac13aeaef21b639fdafa30aaa553</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFbBnxAQwUuanUyyyR5LsCpUBM09TJIN3ZJ0425y6L83JQUPgqc3zHzzHjzG7oGvwhiiAFZrRAHhBVtAjOiLREaXbMF5GPqRiPk1u3FuzzmIVMgF-3wf20H3u6PTlfMyM_atqr1NO-o6yHfKdtQG67KlQZuD96W78TyaxsvIluYQzDK9dr1xelDull011Dp1d9YlyzfPefbqbz9e3rL11icEHPyqAV5jFcWiVBJlxUUJBCQaQi6JNzWlKVWApEg1IZQC5bQ7XYkojnHJHmbb3prvUbmh2JvRHqbEIoxkJJIEUf5LAaYJB5zAJXuaqcoa56xqit7qjuyxAF6cai2gmGud0McZJU30a_aH-wHwfHVu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138701377</pqid></control><display><type>article</type><title>Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites</title><source>Alma/SFX Local Collection</source><creator>Meng, Songhe ; Zhou, Yinjia ; Xie, Weihua ; Yi, Fajun ; Du, Shanyi</creator><creatorcontrib>Meng, Songhe ; Zhou, Yinjia ; Xie, Weihua ; Yi, Fajun ; Du, Shanyi</creatorcontrib><description>A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibrium gas–surface interactions, and then the computational fluid dynamics solver was coupled with a thermal analysis, finite element method solver. The gas and solid regions were coupled at the surface by appropriate energy and mass balances. A mesh movement algorithm was implemented in the finite element method to achieve surface recession. The capabilities of this coupled method were demonstrated by simulating the thermal and ablation behaviors of a wedge-shaped leading edge in hypersonic flows. The effect of the nose shape change on the ablation process was also discussed. The coupling method developed in this work could be used to simulate aerothermodynamics and carbon ablation during Earth reentry.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A33612</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Ablation ; Ablative materials ; Aerodynamics ; Aerothermodynamics ; Algorithms ; Carbon ; Computational fluid dynamics ; Computer simulation ; Finite element analysis ; Finite element method ; Fluid dynamics ; Gas-surface interactions ; Hypersonic flow ; Hypersonic reentry ; Leading edges ; Mathematical analysis ; Nonlinear programming ; Recession ; Reentry ; Shape effects ; Solvers ; Thermal analysis ; Thermal simulation</subject><ispartof>Journal of spacecraft and rockets, 2016-09, Vol.53 (5), p.930-935</ispartof><rights>Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request.</rights><rights>Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0022-4650 (print) or 1533-6794 (online) to initiate your request.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-cf10d3c456be939c06b1a1a6fa309a0fda88ac13aeaef21b639fdafa30aaa553</citedby><cites>FETCH-LOGICAL-a313t-cf10d3c456be939c06b1a1a6fa309a0fda88ac13aeaef21b639fdafa30aaa553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meng, Songhe</creatorcontrib><creatorcontrib>Zhou, Yinjia</creatorcontrib><creatorcontrib>Xie, Weihua</creatorcontrib><creatorcontrib>Yi, Fajun</creatorcontrib><creatorcontrib>Du, Shanyi</creatorcontrib><title>Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites</title><title>Journal of spacecraft and rockets</title><description>A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibrium gas–surface interactions, and then the computational fluid dynamics solver was coupled with a thermal analysis, finite element method solver. The gas and solid regions were coupled at the surface by appropriate energy and mass balances. A mesh movement algorithm was implemented in the finite element method to achieve surface recession. The capabilities of this coupled method were demonstrated by simulating the thermal and ablation behaviors of a wedge-shaped leading edge in hypersonic flows. The effect of the nose shape change on the ablation process was also discussed. The coupling method developed in this work could be used to simulate aerothermodynamics and carbon ablation during Earth reentry.</description><subject>Ablation</subject><subject>Ablative materials</subject><subject>Aerodynamics</subject><subject>Aerothermodynamics</subject><subject>Algorithms</subject><subject>Carbon</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Gas-surface interactions</subject><subject>Hypersonic flow</subject><subject>Hypersonic reentry</subject><subject>Leading edges</subject><subject>Mathematical analysis</subject><subject>Nonlinear programming</subject><subject>Recession</subject><subject>Reentry</subject><subject>Shape effects</subject><subject>Solvers</subject><subject>Thermal analysis</subject><subject>Thermal simulation</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFbBnxAQwUuanUyyyR5LsCpUBM09TJIN3ZJ0425y6L83JQUPgqc3zHzzHjzG7oGvwhiiAFZrRAHhBVtAjOiLREaXbMF5GPqRiPk1u3FuzzmIVMgF-3wf20H3u6PTlfMyM_atqr1NO-o6yHfKdtQG67KlQZuD96W78TyaxsvIluYQzDK9dr1xelDull011Dp1d9YlyzfPefbqbz9e3rL11icEHPyqAV5jFcWiVBJlxUUJBCQaQi6JNzWlKVWApEg1IZQC5bQ7XYkojnHJHmbb3prvUbmh2JvRHqbEIoxkJJIEUf5LAaYJB5zAJXuaqcoa56xqit7qjuyxAF6cai2gmGud0McZJU30a_aH-wHwfHVu</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Meng, Songhe</creator><creator>Zhou, Yinjia</creator><creator>Xie, Weihua</creator><creator>Yi, Fajun</creator><creator>Du, Shanyi</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites</title><author>Meng, Songhe ; Zhou, Yinjia ; Xie, Weihua ; Yi, Fajun ; Du, Shanyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-cf10d3c456be939c06b1a1a6fa309a0fda88ac13aeaef21b639fdafa30aaa553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ablation</topic><topic>Ablative materials</topic><topic>Aerodynamics</topic><topic>Aerothermodynamics</topic><topic>Algorithms</topic><topic>Carbon</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Gas-surface interactions</topic><topic>Hypersonic flow</topic><topic>Hypersonic reentry</topic><topic>Leading edges</topic><topic>Mathematical analysis</topic><topic>Nonlinear programming</topic><topic>Recession</topic><topic>Reentry</topic><topic>Shape effects</topic><topic>Solvers</topic><topic>Thermal analysis</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Songhe</creatorcontrib><creatorcontrib>Zhou, Yinjia</creatorcontrib><creatorcontrib>Xie, Weihua</creatorcontrib><creatorcontrib>Yi, Fajun</creatorcontrib><creatorcontrib>Du, Shanyi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Songhe</au><au>Zhou, Yinjia</au><au>Xie, Weihua</au><au>Yi, Fajun</au><au>Du, Shanyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>53</volume><issue>5</issue><spage>930</spage><epage>935</epage><pages>930-935</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibrium gas–surface interactions, and then the computational fluid dynamics solver was coupled with a thermal analysis, finite element method solver. The gas and solid regions were coupled at the surface by appropriate energy and mass balances. A mesh movement algorithm was implemented in the finite element method to achieve surface recession. The capabilities of this coupled method were demonstrated by simulating the thermal and ablation behaviors of a wedge-shaped leading edge in hypersonic flows. The effect of the nose shape change on the ablation process was also discussed. The coupling method developed in this work could be used to simulate aerothermodynamics and carbon ablation during Earth reentry.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A33612</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4650 |
ispartof | Journal of spacecraft and rockets, 2016-09, Vol.53 (5), p.930-935 |
issn | 0022-4650 1533-6794 |
language | eng |
recordid | cdi_proquest_journals_2138701377 |
source | Alma/SFX Local Collection |
subjects | Ablation Ablative materials Aerodynamics Aerothermodynamics Algorithms Carbon Computational fluid dynamics Computer simulation Finite element analysis Finite element method Fluid dynamics Gas-surface interactions Hypersonic flow Hypersonic reentry Leading edges Mathematical analysis Nonlinear programming Recession Reentry Shape effects Solvers Thermal analysis Thermal simulation |
title | Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20Coupled%20Fluid/Thermal/Ablation%20Simulation%20of%20Carbon/Carbon%20Composites&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Meng,%20Songhe&rft.date=2016-09-01&rft.volume=53&rft.issue=5&rft.spage=930&rft.epage=935&rft.pages=930-935&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A33612&rft_dat=%3Cproquest_aiaa_%3E2138701377%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138701377&rft_id=info:pmid/&rfr_iscdi=true |