Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites

A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 2016-09, Vol.53 (5), p.930-935
Hauptverfasser: Meng, Songhe, Zhou, Yinjia, Xie, Weihua, Yi, Fajun, Du, Shanyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 5
container_start_page 930
container_title Journal of spacecraft and rockets
container_volume 53
creator Meng, Songhe
Zhou, Yinjia
Xie, Weihua
Yi, Fajun
Du, Shanyi
description A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibrium gas–surface interactions, and then the computational fluid dynamics solver was coupled with a thermal analysis, finite element method solver. The gas and solid regions were coupled at the surface by appropriate energy and mass balances. A mesh movement algorithm was implemented in the finite element method to achieve surface recession. The capabilities of this coupled method were demonstrated by simulating the thermal and ablation behaviors of a wedge-shaped leading edge in hypersonic flows. The effect of the nose shape change on the ablation process was also discussed. The coupling method developed in this work could be used to simulate aerothermodynamics and carbon ablation during Earth reentry.
doi_str_mv 10.2514/1.A33612
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2138701377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138701377</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-cf10d3c456be939c06b1a1a6fa309a0fda88ac13aeaef21b639fdafa30aaa553</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFbBnxAQwUuanUyyyR5LsCpUBM09TJIN3ZJ0425y6L83JQUPgqc3zHzzHjzG7oGvwhiiAFZrRAHhBVtAjOiLREaXbMF5GPqRiPk1u3FuzzmIVMgF-3wf20H3u6PTlfMyM_atqr1NO-o6yHfKdtQG67KlQZuD96W78TyaxsvIluYQzDK9dr1xelDull011Dp1d9YlyzfPefbqbz9e3rL11icEHPyqAV5jFcWiVBJlxUUJBCQaQi6JNzWlKVWApEg1IZQC5bQ7XYkojnHJHmbb3prvUbmh2JvRHqbEIoxkJJIEUf5LAaYJB5zAJXuaqcoa56xqit7qjuyxAF6cai2gmGud0McZJU30a_aH-wHwfHVu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138701377</pqid></control><display><type>article</type><title>Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites</title><source>Alma/SFX Local Collection</source><creator>Meng, Songhe ; Zhou, Yinjia ; Xie, Weihua ; Yi, Fajun ; Du, Shanyi</creator><creatorcontrib>Meng, Songhe ; Zhou, Yinjia ; Xie, Weihua ; Yi, Fajun ; Du, Shanyi</creatorcontrib><description>A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibrium gas–surface interactions, and then the computational fluid dynamics solver was coupled with a thermal analysis, finite element method solver. The gas and solid regions were coupled at the surface by appropriate energy and mass balances. A mesh movement algorithm was implemented in the finite element method to achieve surface recession. The capabilities of this coupled method were demonstrated by simulating the thermal and ablation behaviors of a wedge-shaped leading edge in hypersonic flows. The effect of the nose shape change on the ablation process was also discussed. The coupling method developed in this work could be used to simulate aerothermodynamics and carbon ablation during Earth reentry.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A33612</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Ablation ; Ablative materials ; Aerodynamics ; Aerothermodynamics ; Algorithms ; Carbon ; Computational fluid dynamics ; Computer simulation ; Finite element analysis ; Finite element method ; Fluid dynamics ; Gas-surface interactions ; Hypersonic flow ; Hypersonic reentry ; Leading edges ; Mathematical analysis ; Nonlinear programming ; Recession ; Reentry ; Shape effects ; Solvers ; Thermal analysis ; Thermal simulation</subject><ispartof>Journal of spacecraft and rockets, 2016-09, Vol.53 (5), p.930-935</ispartof><rights>Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request.</rights><rights>Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0022-4650 (print) or 1533-6794 (online) to initiate your request.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-cf10d3c456be939c06b1a1a6fa309a0fda88ac13aeaef21b639fdafa30aaa553</citedby><cites>FETCH-LOGICAL-a313t-cf10d3c456be939c06b1a1a6fa309a0fda88ac13aeaef21b639fdafa30aaa553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meng, Songhe</creatorcontrib><creatorcontrib>Zhou, Yinjia</creatorcontrib><creatorcontrib>Xie, Weihua</creatorcontrib><creatorcontrib>Yi, Fajun</creatorcontrib><creatorcontrib>Du, Shanyi</creatorcontrib><title>Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites</title><title>Journal of spacecraft and rockets</title><description>A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibrium gas–surface interactions, and then the computational fluid dynamics solver was coupled with a thermal analysis, finite element method solver. The gas and solid regions were coupled at the surface by appropriate energy and mass balances. A mesh movement algorithm was implemented in the finite element method to achieve surface recession. The capabilities of this coupled method were demonstrated by simulating the thermal and ablation behaviors of a wedge-shaped leading edge in hypersonic flows. The effect of the nose shape change on the ablation process was also discussed. The coupling method developed in this work could be used to simulate aerothermodynamics and carbon ablation during Earth reentry.</description><subject>Ablation</subject><subject>Ablative materials</subject><subject>Aerodynamics</subject><subject>Aerothermodynamics</subject><subject>Algorithms</subject><subject>Carbon</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Gas-surface interactions</subject><subject>Hypersonic flow</subject><subject>Hypersonic reentry</subject><subject>Leading edges</subject><subject>Mathematical analysis</subject><subject>Nonlinear programming</subject><subject>Recession</subject><subject>Reentry</subject><subject>Shape effects</subject><subject>Solvers</subject><subject>Thermal analysis</subject><subject>Thermal simulation</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFbBnxAQwUuanUyyyR5LsCpUBM09TJIN3ZJ0425y6L83JQUPgqc3zHzzHjzG7oGvwhiiAFZrRAHhBVtAjOiLREaXbMF5GPqRiPk1u3FuzzmIVMgF-3wf20H3u6PTlfMyM_atqr1NO-o6yHfKdtQG67KlQZuD96W78TyaxsvIluYQzDK9dr1xelDull011Dp1d9YlyzfPefbqbz9e3rL11icEHPyqAV5jFcWiVBJlxUUJBCQaQi6JNzWlKVWApEg1IZQC5bQ7XYkojnHJHmbb3prvUbmh2JvRHqbEIoxkJJIEUf5LAaYJB5zAJXuaqcoa56xqit7qjuyxAF6cai2gmGud0McZJU30a_aH-wHwfHVu</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Meng, Songhe</creator><creator>Zhou, Yinjia</creator><creator>Xie, Weihua</creator><creator>Yi, Fajun</creator><creator>Du, Shanyi</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites</title><author>Meng, Songhe ; Zhou, Yinjia ; Xie, Weihua ; Yi, Fajun ; Du, Shanyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-cf10d3c456be939c06b1a1a6fa309a0fda88ac13aeaef21b639fdafa30aaa553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ablation</topic><topic>Ablative materials</topic><topic>Aerodynamics</topic><topic>Aerothermodynamics</topic><topic>Algorithms</topic><topic>Carbon</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Gas-surface interactions</topic><topic>Hypersonic flow</topic><topic>Hypersonic reentry</topic><topic>Leading edges</topic><topic>Mathematical analysis</topic><topic>Nonlinear programming</topic><topic>Recession</topic><topic>Reentry</topic><topic>Shape effects</topic><topic>Solvers</topic><topic>Thermal analysis</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Songhe</creatorcontrib><creatorcontrib>Zhou, Yinjia</creatorcontrib><creatorcontrib>Xie, Weihua</creatorcontrib><creatorcontrib>Yi, Fajun</creatorcontrib><creatorcontrib>Du, Shanyi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Songhe</au><au>Zhou, Yinjia</au><au>Xie, Weihua</au><au>Yi, Fajun</au><au>Du, Shanyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>53</volume><issue>5</issue><spage>930</spage><epage>935</epage><pages>930-935</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>A coupled fluid/thermal/ablation analysis for a carbon/carbon composite leading edge in hypersonic reentry environments was conducted. A finite rate surface ablation model for carbon materials was incorporated into the aerothermodynamics computational fluid dynamics code to simulate the nonequilibrium gas–surface interactions, and then the computational fluid dynamics solver was coupled with a thermal analysis, finite element method solver. The gas and solid regions were coupled at the surface by appropriate energy and mass balances. A mesh movement algorithm was implemented in the finite element method to achieve surface recession. The capabilities of this coupled method were demonstrated by simulating the thermal and ablation behaviors of a wedge-shaped leading edge in hypersonic flows. The effect of the nose shape change on the ablation process was also discussed. The coupling method developed in this work could be used to simulate aerothermodynamics and carbon ablation during Earth reentry.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A33612</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4650
ispartof Journal of spacecraft and rockets, 2016-09, Vol.53 (5), p.930-935
issn 0022-4650
1533-6794
language eng
recordid cdi_proquest_journals_2138701377
source Alma/SFX Local Collection
subjects Ablation
Ablative materials
Aerodynamics
Aerothermodynamics
Algorithms
Carbon
Computational fluid dynamics
Computer simulation
Finite element analysis
Finite element method
Fluid dynamics
Gas-surface interactions
Hypersonic flow
Hypersonic reentry
Leading edges
Mathematical analysis
Nonlinear programming
Recession
Reentry
Shape effects
Solvers
Thermal analysis
Thermal simulation
title Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20Coupled%20Fluid/Thermal/Ablation%20Simulation%20of%20Carbon/Carbon%20Composites&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Meng,%20Songhe&rft.date=2016-09-01&rft.volume=53&rft.issue=5&rft.spage=930&rft.epage=935&rft.pages=930-935&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A33612&rft_dat=%3Cproquest_aiaa_%3E2138701377%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138701377&rft_id=info:pmid/&rfr_iscdi=true