Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation

Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (46), p.23478-23485
Hauptverfasser: Li, Feng, Li, Jing, Gao, Lili, Hu, Yiping, Long, Xuefeng, Wei, Shenqi, Wang, Chenglong, Jin, Jun, Ma, Jiantai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23485
container_issue 46
container_start_page 23478
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Li, Feng
Li, Jing
Gao, Lili
Hu, Yiping
Long, Xuefeng
Wei, Shenqi
Wang, Chenglong
Jin, Jun
Ma, Jiantai
description Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we constructed an efficient hole migration pathway by integrating the co-catalyst (NiOOH) onto the homojunction structured Fe 2 O 3 coating on F-doped α-Fe 2 O 3 nanorods (NiOOH/Fe 2 O 3 /F-Fe 2 O 3 NRs). The resulting photoanode exhibited higher photocurrent density (3.4-fold higher than pristine Fe 2 O 3 ) and lower onset potential (0.61 V RHE ) than most reported hematite-based photoanodes. Detailed physical characterization and electrochemical experiments results reveal that the origin of such superior photoelectrochemical water oxidation performance is due to F-doping, built-in field formation and efficient hole extraction. This newly designed photoanode fulfils the requirements of low surface trapping sites, high conductivity, efficient charge separation and injection efficiency. These findings may open a new avenue of fabricating various efficient homojunction photoanodes for practical PEC water splitting.
doi_str_mv 10.1039/C8TA07832G
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2138270435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138270435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c89a27148e15a7b73ce4aabb2523d8f3d6b70547d2bde4bb1903fe70c170ea2e3</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMouOhe_AQBb0I1f9omPS5FV2HBy3ouSTqxWbpNTbKs--2tu6LOZR4zv3kDD6EbSu4p4dVDLdcLIiRnyzM0Y6Qgmcir8vxXS3mJ5jFuyFSSkLKqZijUfogp7ExyfsDeYjVgsNYZB0PCne8Bb917UMf1qFK3Vwc8yQ620ywBtj78Oxg7nzz0YFLwZmKcUT3eqwQB-0_XHm2u0YVVfYT5T79Cb0-P6_o5W70uX-rFKjO8ZCkzslJM0FwCLZTQghvIldKaFYy30vK21IIUuWiZbiHXmlaEWxDEUEFAMeBX6PbkOwb_sYOYmo3fhWF62TDKJRMk58VE3Z0oE3yMAWwzBrdV4dBQ0nzH2vzFyr8ArK5snw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138270435</pqid></control><display><type>article</type><title>Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Feng ; Li, Jing ; Gao, Lili ; Hu, Yiping ; Long, Xuefeng ; Wei, Shenqi ; Wang, Chenglong ; Jin, Jun ; Ma, Jiantai</creator><creatorcontrib>Li, Feng ; Li, Jing ; Gao, Lili ; Hu, Yiping ; Long, Xuefeng ; Wei, Shenqi ; Wang, Chenglong ; Jin, Jun ; Ma, Jiantai</creatorcontrib><description>Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we constructed an efficient hole migration pathway by integrating the co-catalyst (NiOOH) onto the homojunction structured Fe 2 O 3 coating on F-doped α-Fe 2 O 3 nanorods (NiOOH/Fe 2 O 3 /F-Fe 2 O 3 NRs). The resulting photoanode exhibited higher photocurrent density (3.4-fold higher than pristine Fe 2 O 3 ) and lower onset potential (0.61 V RHE ) than most reported hematite-based photoanodes. Detailed physical characterization and electrochemical experiments results reveal that the origin of such superior photoelectrochemical water oxidation performance is due to F-doping, built-in field formation and efficient hole extraction. This newly designed photoanode fulfils the requirements of low surface trapping sites, high conductivity, efficient charge separation and injection efficiency. These findings may open a new avenue of fabricating various efficient homojunction photoanodes for practical PEC water splitting.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA07832G</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge efficiency ; Charge injection ; Conductivity ; Electrochemical analysis ; Electrochemistry ; Hematite ; Homojunctions ; Migration ; Nanorods ; Oxidation ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Photons ; Separation ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (46), p.23478-23485</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c89a27148e15a7b73ce4aabb2523d8f3d6b70547d2bde4bb1903fe70c170ea2e3</citedby><cites>FETCH-LOGICAL-c362t-c89a27148e15a7b73ce4aabb2523d8f3d6b70547d2bde4bb1903fe70c170ea2e3</cites><orcidid>0000-0001-7680-2008 ; 0000-0003-3133-7696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Gao, Lili</creatorcontrib><creatorcontrib>Hu, Yiping</creatorcontrib><creatorcontrib>Long, Xuefeng</creatorcontrib><creatorcontrib>Wei, Shenqi</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Jin, Jun</creatorcontrib><creatorcontrib>Ma, Jiantai</creatorcontrib><title>Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we constructed an efficient hole migration pathway by integrating the co-catalyst (NiOOH) onto the homojunction structured Fe 2 O 3 coating on F-doped α-Fe 2 O 3 nanorods (NiOOH/Fe 2 O 3 /F-Fe 2 O 3 NRs). The resulting photoanode exhibited higher photocurrent density (3.4-fold higher than pristine Fe 2 O 3 ) and lower onset potential (0.61 V RHE ) than most reported hematite-based photoanodes. Detailed physical characterization and electrochemical experiments results reveal that the origin of such superior photoelectrochemical water oxidation performance is due to F-doping, built-in field formation and efficient hole extraction. This newly designed photoanode fulfils the requirements of low surface trapping sites, high conductivity, efficient charge separation and injection efficiency. These findings may open a new avenue of fabricating various efficient homojunction photoanodes for practical PEC water splitting.</description><subject>Charge efficiency</subject><subject>Charge injection</subject><subject>Conductivity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Hematite</subject><subject>Homojunctions</subject><subject>Migration</subject><subject>Nanorods</subject><subject>Oxidation</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Separation</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAQxYMouOhe_AQBb0I1f9omPS5FV2HBy3ouSTqxWbpNTbKs--2tu6LOZR4zv3kDD6EbSu4p4dVDLdcLIiRnyzM0Y6Qgmcir8vxXS3mJ5jFuyFSSkLKqZijUfogp7ExyfsDeYjVgsNYZB0PCne8Bb917UMf1qFK3Vwc8yQ620ywBtj78Oxg7nzz0YFLwZmKcUT3eqwQB-0_XHm2u0YVVfYT5T79Cb0-P6_o5W70uX-rFKjO8ZCkzslJM0FwCLZTQghvIldKaFYy30vK21IIUuWiZbiHXmlaEWxDEUEFAMeBX6PbkOwb_sYOYmo3fhWF62TDKJRMk58VE3Z0oE3yMAWwzBrdV4dBQ0nzH2vzFyr8ArK5snw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Feng</creator><creator>Li, Jing</creator><creator>Gao, Lili</creator><creator>Hu, Yiping</creator><creator>Long, Xuefeng</creator><creator>Wei, Shenqi</creator><creator>Wang, Chenglong</creator><creator>Jin, Jun</creator><creator>Ma, Jiantai</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7680-2008</orcidid><orcidid>https://orcid.org/0000-0003-3133-7696</orcidid></search><sort><creationdate>2018</creationdate><title>Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation</title><author>Li, Feng ; Li, Jing ; Gao, Lili ; Hu, Yiping ; Long, Xuefeng ; Wei, Shenqi ; Wang, Chenglong ; Jin, Jun ; Ma, Jiantai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c89a27148e15a7b73ce4aabb2523d8f3d6b70547d2bde4bb1903fe70c170ea2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge efficiency</topic><topic>Charge injection</topic><topic>Conductivity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Hematite</topic><topic>Homojunctions</topic><topic>Migration</topic><topic>Nanorods</topic><topic>Oxidation</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Separation</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Gao, Lili</creatorcontrib><creatorcontrib>Hu, Yiping</creatorcontrib><creatorcontrib>Long, Xuefeng</creatorcontrib><creatorcontrib>Wei, Shenqi</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Jin, Jun</creatorcontrib><creatorcontrib>Ma, Jiantai</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Feng</au><au>Li, Jing</au><au>Gao, Lili</au><au>Hu, Yiping</au><au>Long, Xuefeng</au><au>Wei, Shenqi</au><au>Wang, Chenglong</au><au>Jin, Jun</au><au>Ma, Jiantai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>46</issue><spage>23478</spage><epage>23485</epage><pages>23478-23485</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we constructed an efficient hole migration pathway by integrating the co-catalyst (NiOOH) onto the homojunction structured Fe 2 O 3 coating on F-doped α-Fe 2 O 3 nanorods (NiOOH/Fe 2 O 3 /F-Fe 2 O 3 NRs). The resulting photoanode exhibited higher photocurrent density (3.4-fold higher than pristine Fe 2 O 3 ) and lower onset potential (0.61 V RHE ) than most reported hematite-based photoanodes. Detailed physical characterization and electrochemical experiments results reveal that the origin of such superior photoelectrochemical water oxidation performance is due to F-doping, built-in field formation and efficient hole extraction. This newly designed photoanode fulfils the requirements of low surface trapping sites, high conductivity, efficient charge separation and injection efficiency. These findings may open a new avenue of fabricating various efficient homojunction photoanodes for practical PEC water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA07832G</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7680-2008</orcidid><orcidid>https://orcid.org/0000-0003-3133-7696</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (46), p.23478-23485
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2138270435
source Royal Society Of Chemistry Journals 2008-
subjects Charge efficiency
Charge injection
Conductivity
Electrochemical analysis
Electrochemistry
Hematite
Homojunctions
Migration
Nanorods
Oxidation
Photoelectric effect
Photoelectric emission
Photoluminescence
Photons
Separation
Water splitting
title Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20an%20efficient%20hole%20migration%20pathway%20on%20hematite%20for%20efficient%20photoelectrochemical%20water%20oxidation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Feng&rft.date=2018&rft.volume=6&rft.issue=46&rft.spage=23478&rft.epage=23485&rft.pages=23478-23485&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA07832G&rft_dat=%3Cproquest_cross%3E2138270435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138270435&rft_id=info:pmid/&rfr_iscdi=true