Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation
Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we construc...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (46), p.23478-23485 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23485 |
---|---|
container_issue | 46 |
container_start_page | 23478 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Li, Feng Li, Jing Gao, Lili Hu, Yiping Long, Xuefeng Wei, Shenqi Wang, Chenglong Jin, Jun Ma, Jiantai |
description | Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we constructed an efficient hole migration pathway by integrating the co-catalyst (NiOOH) onto the homojunction structured Fe
2
O
3
coating on F-doped α-Fe
2
O
3
nanorods (NiOOH/Fe
2
O
3
/F-Fe
2
O
3
NRs). The resulting photoanode exhibited higher photocurrent density (3.4-fold higher than pristine Fe
2
O
3
) and lower onset potential (0.61
V
RHE
) than most reported hematite-based photoanodes. Detailed physical characterization and electrochemical experiments results reveal that the origin of such superior photoelectrochemical water oxidation performance is due to F-doping, built-in field formation and efficient hole extraction. This newly designed photoanode fulfils the requirements of low surface trapping sites, high conductivity, efficient charge separation and injection efficiency. These findings may open a new avenue of fabricating various efficient homojunction photoanodes for practical PEC water splitting. |
doi_str_mv | 10.1039/C8TA07832G |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2138270435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138270435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c89a27148e15a7b73ce4aabb2523d8f3d6b70547d2bde4bb1903fe70c170ea2e3</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMouOhe_AQBb0I1f9omPS5FV2HBy3ouSTqxWbpNTbKs--2tu6LOZR4zv3kDD6EbSu4p4dVDLdcLIiRnyzM0Y6Qgmcir8vxXS3mJ5jFuyFSSkLKqZijUfogp7ExyfsDeYjVgsNYZB0PCne8Bb917UMf1qFK3Vwc8yQ620ywBtj78Oxg7nzz0YFLwZmKcUT3eqwQB-0_XHm2u0YVVfYT5T79Cb0-P6_o5W70uX-rFKjO8ZCkzslJM0FwCLZTQghvIldKaFYy30vK21IIUuWiZbiHXmlaEWxDEUEFAMeBX6PbkOwb_sYOYmo3fhWF62TDKJRMk58VE3Z0oE3yMAWwzBrdV4dBQ0nzH2vzFyr8ArK5snw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138270435</pqid></control><display><type>article</type><title>Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Feng ; Li, Jing ; Gao, Lili ; Hu, Yiping ; Long, Xuefeng ; Wei, Shenqi ; Wang, Chenglong ; Jin, Jun ; Ma, Jiantai</creator><creatorcontrib>Li, Feng ; Li, Jing ; Gao, Lili ; Hu, Yiping ; Long, Xuefeng ; Wei, Shenqi ; Wang, Chenglong ; Jin, Jun ; Ma, Jiantai</creatorcontrib><description>Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we constructed an efficient hole migration pathway by integrating the co-catalyst (NiOOH) onto the homojunction structured Fe
2
O
3
coating on F-doped α-Fe
2
O
3
nanorods (NiOOH/Fe
2
O
3
/F-Fe
2
O
3
NRs). The resulting photoanode exhibited higher photocurrent density (3.4-fold higher than pristine Fe
2
O
3
) and lower onset potential (0.61
V
RHE
) than most reported hematite-based photoanodes. Detailed physical characterization and electrochemical experiments results reveal that the origin of such superior photoelectrochemical water oxidation performance is due to F-doping, built-in field formation and efficient hole extraction. This newly designed photoanode fulfils the requirements of low surface trapping sites, high conductivity, efficient charge separation and injection efficiency. These findings may open a new avenue of fabricating various efficient homojunction photoanodes for practical PEC water splitting.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA07832G</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge efficiency ; Charge injection ; Conductivity ; Electrochemical analysis ; Electrochemistry ; Hematite ; Homojunctions ; Migration ; Nanorods ; Oxidation ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Photons ; Separation ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (46), p.23478-23485</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c89a27148e15a7b73ce4aabb2523d8f3d6b70547d2bde4bb1903fe70c170ea2e3</citedby><cites>FETCH-LOGICAL-c362t-c89a27148e15a7b73ce4aabb2523d8f3d6b70547d2bde4bb1903fe70c170ea2e3</cites><orcidid>0000-0001-7680-2008 ; 0000-0003-3133-7696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Gao, Lili</creatorcontrib><creatorcontrib>Hu, Yiping</creatorcontrib><creatorcontrib>Long, Xuefeng</creatorcontrib><creatorcontrib>Wei, Shenqi</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Jin, Jun</creatorcontrib><creatorcontrib>Ma, Jiantai</creatorcontrib><title>Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we constructed an efficient hole migration pathway by integrating the co-catalyst (NiOOH) onto the homojunction structured Fe
2
O
3
coating on F-doped α-Fe
2
O
3
nanorods (NiOOH/Fe
2
O
3
/F-Fe
2
O
3
NRs). The resulting photoanode exhibited higher photocurrent density (3.4-fold higher than pristine Fe
2
O
3
) and lower onset potential (0.61
V
RHE
) than most reported hematite-based photoanodes. Detailed physical characterization and electrochemical experiments results reveal that the origin of such superior photoelectrochemical water oxidation performance is due to F-doping, built-in field formation and efficient hole extraction. This newly designed photoanode fulfils the requirements of low surface trapping sites, high conductivity, efficient charge separation and injection efficiency. These findings may open a new avenue of fabricating various efficient homojunction photoanodes for practical PEC water splitting.</description><subject>Charge efficiency</subject><subject>Charge injection</subject><subject>Conductivity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Hematite</subject><subject>Homojunctions</subject><subject>Migration</subject><subject>Nanorods</subject><subject>Oxidation</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Separation</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAQxYMouOhe_AQBb0I1f9omPS5FV2HBy3ouSTqxWbpNTbKs--2tu6LOZR4zv3kDD6EbSu4p4dVDLdcLIiRnyzM0Y6Qgmcir8vxXS3mJ5jFuyFSSkLKqZijUfogp7ExyfsDeYjVgsNYZB0PCne8Bb917UMf1qFK3Vwc8yQ620ywBtj78Oxg7nzz0YFLwZmKcUT3eqwQB-0_XHm2u0YVVfYT5T79Cb0-P6_o5W70uX-rFKjO8ZCkzslJM0FwCLZTQghvIldKaFYy30vK21IIUuWiZbiHXmlaEWxDEUEFAMeBX6PbkOwb_sYOYmo3fhWF62TDKJRMk58VE3Z0oE3yMAWwzBrdV4dBQ0nzH2vzFyr8ArK5snw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Feng</creator><creator>Li, Jing</creator><creator>Gao, Lili</creator><creator>Hu, Yiping</creator><creator>Long, Xuefeng</creator><creator>Wei, Shenqi</creator><creator>Wang, Chenglong</creator><creator>Jin, Jun</creator><creator>Ma, Jiantai</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7680-2008</orcidid><orcidid>https://orcid.org/0000-0003-3133-7696</orcidid></search><sort><creationdate>2018</creationdate><title>Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation</title><author>Li, Feng ; Li, Jing ; Gao, Lili ; Hu, Yiping ; Long, Xuefeng ; Wei, Shenqi ; Wang, Chenglong ; Jin, Jun ; Ma, Jiantai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c89a27148e15a7b73ce4aabb2523d8f3d6b70547d2bde4bb1903fe70c170ea2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge efficiency</topic><topic>Charge injection</topic><topic>Conductivity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Hematite</topic><topic>Homojunctions</topic><topic>Migration</topic><topic>Nanorods</topic><topic>Oxidation</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Separation</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Gao, Lili</creatorcontrib><creatorcontrib>Hu, Yiping</creatorcontrib><creatorcontrib>Long, Xuefeng</creatorcontrib><creatorcontrib>Wei, Shenqi</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Jin, Jun</creatorcontrib><creatorcontrib>Ma, Jiantai</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Feng</au><au>Li, Jing</au><au>Gao, Lili</au><au>Hu, Yiping</au><au>Long, Xuefeng</au><au>Wei, Shenqi</au><au>Wang, Chenglong</au><au>Jin, Jun</au><au>Ma, Jiantai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>46</issue><spage>23478</spage><epage>23485</epage><pages>23478-23485</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Hematite is a prototypical photoanode material that has recently piqued great interest, but fails to deliver the expected performance. The most pronounced disadvantage that plagues the promises held by hematite is its low charge separation efficiency and poor conductivity. In this study, we constructed an efficient hole migration pathway by integrating the co-catalyst (NiOOH) onto the homojunction structured Fe
2
O
3
coating on F-doped α-Fe
2
O
3
nanorods (NiOOH/Fe
2
O
3
/F-Fe
2
O
3
NRs). The resulting photoanode exhibited higher photocurrent density (3.4-fold higher than pristine Fe
2
O
3
) and lower onset potential (0.61
V
RHE
) than most reported hematite-based photoanodes. Detailed physical characterization and electrochemical experiments results reveal that the origin of such superior photoelectrochemical water oxidation performance is due to F-doping, built-in field formation and efficient hole extraction. This newly designed photoanode fulfils the requirements of low surface trapping sites, high conductivity, efficient charge separation and injection efficiency. These findings may open a new avenue of fabricating various efficient homojunction photoanodes for practical PEC water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA07832G</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7680-2008</orcidid><orcidid>https://orcid.org/0000-0003-3133-7696</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (46), p.23478-23485 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2138270435 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Charge efficiency Charge injection Conductivity Electrochemical analysis Electrochemistry Hematite Homojunctions Migration Nanorods Oxidation Photoelectric effect Photoelectric emission Photoluminescence Photons Separation Water splitting |
title | Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20an%20efficient%20hole%20migration%20pathway%20on%20hematite%20for%20efficient%20photoelectrochemical%20water%20oxidation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Feng&rft.date=2018&rft.volume=6&rft.issue=46&rft.spage=23478&rft.epage=23485&rft.pages=23478-23485&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA07832G&rft_dat=%3Cproquest_cross%3E2138270435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138270435&rft_id=info:pmid/&rfr_iscdi=true |