Missing values in replicated Latin squares

Designs based on any number of replicated Latin squares are examined for their robustness against the loss of up to three observations randomly scattered throughout the design. The information matrix for the treatment effects is used to evaluate the average variances of the treatment differences for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2001-08, Vol.28 (6), p.743-757
Hauptverfasser: Mansson, Ralph A., Prescott, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 757
container_issue 6
container_start_page 743
container_title Journal of applied statistics
container_volume 28
creator Mansson, Ralph A.
Prescott, Philip
description Designs based on any number of replicated Latin squares are examined for their robustness against the loss of up to three observations randomly scattered throughout the design. The information matrix for the treatment effects is used to evaluate the average variances of the treatment differences for each design in terms of the number of missing values and the size of the design. The resulting average variances are used to assess the overall robustness of the designs. In general, there are 16 different situations for the case of three missing values when there are at least three Latin square replicates in the design. Algebraic expressions may be determined for all possible configurations, but here the best and worst cases are given in detail. Numerical illustrations are provided for the average variances, relative efficiencies, minimum and maximum variances and the frequency counts, showing the effects of the missing values for a range of design sizes and levels of replication.
doi_str_mv 10.1080/02664760120059273
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_213793742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>120772353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2261a15d01b255ee28a3a8dc45f337d2deb80efe57e18741dd24289e2e978f163</originalsourceid><addsrcrecordid>eNqFkEtPAyEUhYnRxPr4Ae4mLk1GL9xhoIkb0_hMjRtdEzowSjOdmQKt9t9LM8ZNE10cLoHzHS6XkDMKlxQkXAEry0KUQBkAHzOBe2REsYQcOLJ9Mtre58mAh-QohDkASMpxRC6eXQiufc_WulnZkLk287ZvXKWjNdlUx3QQlivtbTghB7Vugj39qcfk7e72dfKQT1_uHyc307xCATFnrKSacgN0xji3lkmNWpqq4DWiMMzYmQRbWy4slaKgxrCCybFldixkTUs8JudDbu-7Zeopqnm38m16UjGKYoyiYMlEB1PluxC8rVXv3UL7jaKgthNROxNJzNPApB_a6heIup7rPkSt1go1k2nZbDcANBWXVCb1SaJAJbhQH3GRwq6HMNfWnV_oz843JmVtms7XXreVCwr_6kX8i-9QKn5F_AYp3Y_B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213793742</pqid></control><display><type>article</type><title>Missing values in replicated Latin squares</title><source>RePEc</source><source>EBSCOhost Business Source Complete</source><creator>Mansson, Ralph A. ; Prescott, Philip</creator><creatorcontrib>Mansson, Ralph A. ; Prescott, Philip</creatorcontrib><description>Designs based on any number of replicated Latin squares are examined for their robustness against the loss of up to three observations randomly scattered throughout the design. The information matrix for the treatment effects is used to evaluate the average variances of the treatment differences for each design in terms of the number of missing values and the size of the design. The resulting average variances are used to assess the overall robustness of the designs. In general, there are 16 different situations for the case of three missing values when there are at least three Latin square replicates in the design. Algebraic expressions may be determined for all possible configurations, but here the best and worst cases are given in detail. Numerical illustrations are provided for the average variances, relative efficiencies, minimum and maximum variances and the frequency counts, showing the effects of the missing values for a range of design sizes and levels of replication.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664760120059273</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Statistics</subject><ispartof>Journal of applied statistics, 2001-08, Vol.28 (6), p.743-757</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2001</rights><rights>Copyright Carfax Publishing Company Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-2261a15d01b255ee28a3a8dc45f337d2deb80efe57e18741dd24289e2e978f163</citedby><cites>FETCH-LOGICAL-c370t-2261a15d01b255ee28a3a8dc45f337d2deb80efe57e18741dd24289e2e978f163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4008,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafjapsta/v_3a28_3ay_3a2001_3ai_3a6_3ap_3a743-757.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansson, Ralph A.</creatorcontrib><creatorcontrib>Prescott, Philip</creatorcontrib><title>Missing values in replicated Latin squares</title><title>Journal of applied statistics</title><description>Designs based on any number of replicated Latin squares are examined for their robustness against the loss of up to three observations randomly scattered throughout the design. The information matrix for the treatment effects is used to evaluate the average variances of the treatment differences for each design in terms of the number of missing values and the size of the design. The resulting average variances are used to assess the overall robustness of the designs. In general, there are 16 different situations for the case of three missing values when there are at least three Latin square replicates in the design. Algebraic expressions may be determined for all possible configurations, but here the best and worst cases are given in detail. Numerical illustrations are provided for the average variances, relative efficiencies, minimum and maximum variances and the frequency counts, showing the effects of the missing values for a range of design sizes and levels of replication.</description><subject>Statistics</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtPAyEUhYnRxPr4Ae4mLk1GL9xhoIkb0_hMjRtdEzowSjOdmQKt9t9LM8ZNE10cLoHzHS6XkDMKlxQkXAEry0KUQBkAHzOBe2REsYQcOLJ9Mtre58mAh-QohDkASMpxRC6eXQiufc_WulnZkLk287ZvXKWjNdlUx3QQlivtbTghB7Vugj39qcfk7e72dfKQT1_uHyc307xCATFnrKSacgN0xji3lkmNWpqq4DWiMMzYmQRbWy4slaKgxrCCybFldixkTUs8JudDbu-7Zeopqnm38m16UjGKYoyiYMlEB1PluxC8rVXv3UL7jaKgthNROxNJzNPApB_a6heIup7rPkSt1go1k2nZbDcANBWXVCb1SaJAJbhQH3GRwq6HMNfWnV_oz843JmVtms7XXreVCwr_6kX8i-9QKn5F_AYp3Y_B</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Mansson, Ralph A.</creator><creator>Prescott, Philip</creator><general>Taylor &amp; Francis Group</general><general>Taylor and Francis Journals</general><general>Taylor &amp; Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010801</creationdate><title>Missing values in replicated Latin squares</title><author>Mansson, Ralph A. ; Prescott, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2261a15d01b255ee28a3a8dc45f337d2deb80efe57e18741dd24289e2e978f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansson, Ralph A.</creatorcontrib><creatorcontrib>Prescott, Philip</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansson, Ralph A.</au><au>Prescott, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Missing values in replicated Latin squares</atitle><jtitle>Journal of applied statistics</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>28</volume><issue>6</issue><spage>743</spage><epage>757</epage><pages>743-757</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Designs based on any number of replicated Latin squares are examined for their robustness against the loss of up to three observations randomly scattered throughout the design. The information matrix for the treatment effects is used to evaluate the average variances of the treatment differences for each design in terms of the number of missing values and the size of the design. The resulting average variances are used to assess the overall robustness of the designs. In general, there are 16 different situations for the case of three missing values when there are at least three Latin square replicates in the design. Algebraic expressions may be determined for all possible configurations, but here the best and worst cases are given in detail. Numerical illustrations are provided for the average variances, relative efficiencies, minimum and maximum variances and the frequency counts, showing the effects of the missing values for a range of design sizes and levels of replication.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/02664760120059273</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2001-08, Vol.28 (6), p.743-757
issn 0266-4763
1360-0532
language eng
recordid cdi_proquest_journals_213793742
source RePEc; EBSCOhost Business Source Complete
subjects Statistics
title Missing values in replicated Latin squares
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Missing%20values%20in%20replicated%20Latin%20squares&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Mansson,%20Ralph%20A.&rft.date=2001-08-01&rft.volume=28&rft.issue=6&rft.spage=743&rft.epage=757&rft.pages=743-757&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664760120059273&rft_dat=%3Cproquest_infor%3E120772353%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213793742&rft_id=info:pmid/&rfr_iscdi=true