The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials

In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials [f.sub.i,j] were introduced by Abe-Harada-Horiguchi-Mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Japan Academy. Series A. Mathematical sciences 2018-11, Vol.94 (9), p.87-92
1. Verfasser: Horiguchi, Tatsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 9
container_start_page 87
container_title Proceedings of the Japan Academy. Series A. Mathematical sciences
container_volume 94
creator Horiguchi, Tatsuya
description In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials [f.sub.i,j] were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial [f.sub.i,j] is an alternating sum of certain Schubert polynomials.Key words: Flag varieties; Hessenberg varieties; Schubert polynomials.
doi_str_mv 10.3792/pjaa.94.87
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2137835847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A563953220</galeid><sourcerecordid>A563953220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-83dd29f79662af01177341eeef2abb752f6e1ca2101829bff2c7da590858856e3</originalsourceid><addsrcrecordid>eNptkU9LAzEQxfegYK1e_AQBb0Jr_mw2ybEUtULBgxWPIc1Otim7yZpshX57VyqIIHN4zOP3Zg6vKG4InjOh6H2_N2auyrkUZ8UEM1nNKFHlRXGZ8x6POxZqUrxvdoBs3MUutrE5ouRDk1F0KEFzaE1Cwbd9HCAMaAU5Q9hCatCnSR4GDxmZUKNXuzuM9oD62B5D7Lxp81Vx7kaB6x-dFm-PD5vlarZ-eXpeLtYzW3I-zCSra6qcUFVFjcOECMFKAgCOmu1WcOoqINZQgomkausctaI2XGHJpeQVsGlxe7rbp_hxgDzofTykML7UlDAhGZel-KUa04L2wcUhGdv5bPWCV0xxRikeqfk_1Dg1dN7GAM6P_p_A3SlgU8w5gdN98p1JR02w_u5Af3egVamlYF86Znuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137835847</pqid></control><display><type>article</type><title>The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials</title><source>Project Euclid Open Access Journals</source><source>Freely Accessible Japanese Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Horiguchi, Tatsuya</creator><creatorcontrib>Horiguchi, Tatsuya</creatorcontrib><description>In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials [f.sub.i,j] were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial [f.sub.i,j] is an alternating sum of certain Schubert polynomials.Key words: Flag varieties; Hessenberg varieties; Schubert polynomials.</description><identifier>ISSN: 0386-2194</identifier><identifier>DOI: 10.3792/pjaa.94.87</identifier><language>eng</language><publisher>Ueno Park: The Japan Academy</publisher><subject>Mathematical research ; Polynomials ; Rings (Mathematics)</subject><ispartof>Proceedings of the Japan Academy. Series A. Mathematical sciences, 2018-11, Vol.94 (9), p.87-92</ispartof><rights>COPYRIGHT 2018 The Japan Academy</rights><rights>Copyright The Japan Academy Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-83dd29f79662af01177341eeef2abb752f6e1ca2101829bff2c7da590858856e3</citedby><cites>FETCH-LOGICAL-c455t-83dd29f79662af01177341eeef2abb752f6e1ca2101829bff2c7da590858856e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Horiguchi, Tatsuya</creatorcontrib><title>The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials</title><title>Proceedings of the Japan Academy. Series A. Mathematical sciences</title><description>In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials [f.sub.i,j] were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial [f.sub.i,j] is an alternating sum of certain Schubert polynomials.Key words: Flag varieties; Hessenberg varieties; Schubert polynomials.</description><subject>Mathematical research</subject><subject>Polynomials</subject><subject>Rings (Mathematics)</subject><issn>0386-2194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkU9LAzEQxfegYK1e_AQBb0Jr_mw2ybEUtULBgxWPIc1Otim7yZpshX57VyqIIHN4zOP3Zg6vKG4InjOh6H2_N2auyrkUZ8UEM1nNKFHlRXGZ8x6POxZqUrxvdoBs3MUutrE5ouRDk1F0KEFzaE1Cwbd9HCAMaAU5Q9hCatCnSR4GDxmZUKNXuzuM9oD62B5D7Lxp81Vx7kaB6x-dFm-PD5vlarZ-eXpeLtYzW3I-zCSra6qcUFVFjcOECMFKAgCOmu1WcOoqINZQgomkausctaI2XGHJpeQVsGlxe7rbp_hxgDzofTykML7UlDAhGZel-KUa04L2wcUhGdv5bPWCV0xxRikeqfk_1Dg1dN7GAM6P_p_A3SlgU8w5gdN98p1JR02w_u5Af3egVamlYF86Znuw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Horiguchi, Tatsuya</creator><general>The Japan Academy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20181101</creationdate><title>The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials</title><author>Horiguchi, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-83dd29f79662af01177341eeef2abb752f6e1ca2101829bff2c7da590858856e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical research</topic><topic>Polynomials</topic><topic>Rings (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horiguchi, Tatsuya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Japan Academy. Series A. Mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horiguchi, Tatsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials</atitle><jtitle>Proceedings of the Japan Academy. Series A. Mathematical sciences</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>94</volume><issue>9</issue><spage>87</spage><epage>92</epage><pages>87-92</pages><issn>0386-2194</issn><abstract>In this paper we study a relation between the cohomology ring of a regular nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of the cohomology ring of a regular nilpotent Hessenberg variety, polynomials [f.sub.i,j] were introduced by Abe-Harada-Horiguchi-Masuda. We show that every polynomial [f.sub.i,j] is an alternating sum of certain Schubert polynomials.Key words: Flag varieties; Hessenberg varieties; Schubert polynomials.</abstract><cop>Ueno Park</cop><pub>The Japan Academy</pub><doi>10.3792/pjaa.94.87</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0386-2194
ispartof Proceedings of the Japan Academy. Series A. Mathematical sciences, 2018-11, Vol.94 (9), p.87-92
issn 0386-2194
language eng
recordid cdi_proquest_journals_2137835847
source Project Euclid Open Access Journals; Freely Accessible Japanese Titles; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Mathematical research
Polynomials
Rings (Mathematics)
title The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cohomology%20rings%20of%20regular%20nilpotent%20Hessenberg%20varieties%20and%20Schubert%20polynomials&rft.jtitle=Proceedings%20of%20the%20Japan%20Academy.%20Series%20A.%20Mathematical%20sciences&rft.au=Horiguchi,%20Tatsuya&rft.date=2018-11-01&rft.volume=94&rft.issue=9&rft.spage=87&rft.epage=92&rft.pages=87-92&rft.issn=0386-2194&rft_id=info:doi/10.3792/pjaa.94.87&rft_dat=%3Cgale_proqu%3EA563953220%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137835847&rft_id=info:pmid/&rft_galeid=A563953220&rfr_iscdi=true