Hydrodynamics and Sediment Mobility Processes Over a Degraded Senile Coral Reef

Coral reefs can influence hydrodynamics and morphodynamics by dissipating and refracting incident wave energy, modifying circulation patterns, and altering sediment transport pathways. In this study, the sediment and hydrodynamic response of a senile (dead) barrier reef (Crocker Reef, located in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2018-10, Vol.123 (10), p.7053-7066
Hauptverfasser: Torres‐Garcia, Legna M., Dalyander, P. Soupy, Long, Joseph W., Zawada, David G., Yates, Kimberly K., Moore, Christopher, Olabarrieta, Maitane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7066
container_issue 10
container_start_page 7053
container_title Journal of geophysical research. Oceans
container_volume 123
creator Torres‐Garcia, Legna M.
Dalyander, P. Soupy
Long, Joseph W.
Zawada, David G.
Yates, Kimberly K.
Moore, Christopher
Olabarrieta, Maitane
description Coral reefs can influence hydrodynamics and morphodynamics by dissipating and refracting incident wave energy, modifying circulation patterns, and altering sediment transport pathways. In this study, the sediment and hydrodynamic response of a senile (dead) barrier reef (Crocker Reef, located in the upper portion of the Florida Reef Tract) to storms and quiescent conditions was evaluated using field observations and the Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport model. Waves, circulation, and resultant sediment mobility were modeled across different reef zones. Sediment mobility during quiescent periods and the passage of far‐field storms are driven by nonbreaking waves and, to a lesser degree, regional circulation. Spatial variability in these processes produces the present‐day distribution of sediment grain size at Crocker Reef, wherein finer‐grain material along a shallow central ridge is frequently mobilized (43% to 62% of the time), winnowed away, and deposited along the lower‐energy flanks and in the fore reef where sand mobility occurs less frequently (32% to 43% and 1% to 22% of the time, respectively). Analysis of wave conditions for the period of 2006–2014 supports that wave heights rarely exceed the threshold for breaking (0.1% and 0.3% at the reef crest and at the reef flat, respectively), predominantly during the passage of tropical storms. There is a shift to a wave‐breaking regime during near‐field storms, creating the potential for mobilization of larger material and enhanced reef degradation. Sediment mobility can be enhanced due to wave skewness or the generation of free infragravity waves during periods of depth‐induced wave breaking. Key Points Wave energy dissipation on a degraded reef is dominated by wave breaking during near‐field storms and through bottom friction otherwise Spatial variability in sediment grain size (sand to gravel) is identified and correlated to modeled shear stress variability Sand is frequently resuspended, whereas mobility of reef gravel is confined to higher‐energy storm events
doi_str_mv 10.1029/2018JC013892
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137640773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137640773</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3685-9c091aef6612c03ee1ad04cdbca59da42891b613adca1ebf051d53945677dc153</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCg7dmx8g4KvVXNK0zaNU3RyTydTnkCZX6eiamWxKv70dE_HJe7l7-HHH_Qm5AHYNjKsbzqCYlQxEofgRGXHIVKK4guPfOZenZBzjig1VQJGmakQW094F7_rOrBsbqekcfUHXrLHb0idfNW2z7elz8BZjxEgXnxiooXf4HozDve2aFmnpg2npErE-Jye1aSOOf_oZeXu4fy2nyXwxeSxv54kRWSETZZkCg3WWAbdMIIJxLLWuskYqZ1JeKKgyEMZZA1jVTIKTQqUyy3NnQYozcnnYuwn-Y4dxq1d-F7rhpOYg8ixleS4GdXVQNvgYA9Z6E5q1Cb0Gpvep6b-pDVwc-NfwVP-v1bPJsuQChBTfbx1sxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137640773</pqid></control><display><type>article</type><title>Hydrodynamics and Sediment Mobility Processes Over a Degraded Senile Coral Reef</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Torres‐Garcia, Legna M. ; Dalyander, P. Soupy ; Long, Joseph W. ; Zawada, David G. ; Yates, Kimberly K. ; Moore, Christopher ; Olabarrieta, Maitane</creator><creatorcontrib>Torres‐Garcia, Legna M. ; Dalyander, P. Soupy ; Long, Joseph W. ; Zawada, David G. ; Yates, Kimberly K. ; Moore, Christopher ; Olabarrieta, Maitane</creatorcontrib><description>Coral reefs can influence hydrodynamics and morphodynamics by dissipating and refracting incident wave energy, modifying circulation patterns, and altering sediment transport pathways. In this study, the sediment and hydrodynamic response of a senile (dead) barrier reef (Crocker Reef, located in the upper portion of the Florida Reef Tract) to storms and quiescent conditions was evaluated using field observations and the Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport model. Waves, circulation, and resultant sediment mobility were modeled across different reef zones. Sediment mobility during quiescent periods and the passage of far‐field storms are driven by nonbreaking waves and, to a lesser degree, regional circulation. Spatial variability in these processes produces the present‐day distribution of sediment grain size at Crocker Reef, wherein finer‐grain material along a shallow central ridge is frequently mobilized (43% to 62% of the time), winnowed away, and deposited along the lower‐energy flanks and in the fore reef where sand mobility occurs less frequently (32% to 43% and 1% to 22% of the time, respectively). Analysis of wave conditions for the period of 2006–2014 supports that wave heights rarely exceed the threshold for breaking (0.1% and 0.3% at the reef crest and at the reef flat, respectively), predominantly during the passage of tropical storms. There is a shift to a wave‐breaking regime during near‐field storms, creating the potential for mobilization of larger material and enhanced reef degradation. Sediment mobility can be enhanced due to wave skewness or the generation of free infragravity waves during periods of depth‐induced wave breaking. Key Points Wave energy dissipation on a degraded reef is dominated by wave breaking during near‐field storms and through bottom friction otherwise Spatial variability in sediment grain size (sand to gravel) is identified and correlated to modeled shear stress variability Sand is frequently resuspended, whereas mobility of reef gravel is confined to higher‐energy storm events</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2018JC013892</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric circulation ; barrier reef ; Barrier reefs ; Circulation patterns ; Computational fluid dynamics ; Coral reefs ; Corals ; degraded reef ; Fluid flow ; Fluid mechanics ; Geophysics ; Grain size distribution ; Hydrodynamics ; Incident waves ; Mobility ; Sediment ; sediment dynamics ; Sediment transport ; Skewness ; Spatial distribution ; Spatial variability ; Spatial variations ; Storms ; Temperature (air-sea) ; Transport ; Tropical climate ; Tropical depressions ; Tropical storms ; Wave analysis ; Wave breaking ; Wave energy ; wave energy dissipation ; Wave height ; Wave power</subject><ispartof>Journal of geophysical research. Oceans, 2018-10, Vol.123 (10), p.7053-7066</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>2018. American Geophysical Union. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3685-9c091aef6612c03ee1ad04cdbca59da42891b613adca1ebf051d53945677dc153</citedby><cites>FETCH-LOGICAL-a3685-9c091aef6612c03ee1ad04cdbca59da42891b613adca1ebf051d53945677dc153</cites><orcidid>0000-0003-2912-1992 ; 0000-0003-4547-4878 ; 0000-0003-3210-4878 ; 0000-0002-6786-5944 ; 0000-0001-8764-0358 ; 0000-0002-7619-7992 ; 0000-0001-9583-0872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JC013892$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JC013892$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Torres‐Garcia, Legna M.</creatorcontrib><creatorcontrib>Dalyander, P. Soupy</creatorcontrib><creatorcontrib>Long, Joseph W.</creatorcontrib><creatorcontrib>Zawada, David G.</creatorcontrib><creatorcontrib>Yates, Kimberly K.</creatorcontrib><creatorcontrib>Moore, Christopher</creatorcontrib><creatorcontrib>Olabarrieta, Maitane</creatorcontrib><title>Hydrodynamics and Sediment Mobility Processes Over a Degraded Senile Coral Reef</title><title>Journal of geophysical research. Oceans</title><description>Coral reefs can influence hydrodynamics and morphodynamics by dissipating and refracting incident wave energy, modifying circulation patterns, and altering sediment transport pathways. In this study, the sediment and hydrodynamic response of a senile (dead) barrier reef (Crocker Reef, located in the upper portion of the Florida Reef Tract) to storms and quiescent conditions was evaluated using field observations and the Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport model. Waves, circulation, and resultant sediment mobility were modeled across different reef zones. Sediment mobility during quiescent periods and the passage of far‐field storms are driven by nonbreaking waves and, to a lesser degree, regional circulation. Spatial variability in these processes produces the present‐day distribution of sediment grain size at Crocker Reef, wherein finer‐grain material along a shallow central ridge is frequently mobilized (43% to 62% of the time), winnowed away, and deposited along the lower‐energy flanks and in the fore reef where sand mobility occurs less frequently (32% to 43% and 1% to 22% of the time, respectively). Analysis of wave conditions for the period of 2006–2014 supports that wave heights rarely exceed the threshold for breaking (0.1% and 0.3% at the reef crest and at the reef flat, respectively), predominantly during the passage of tropical storms. There is a shift to a wave‐breaking regime during near‐field storms, creating the potential for mobilization of larger material and enhanced reef degradation. Sediment mobility can be enhanced due to wave skewness or the generation of free infragravity waves during periods of depth‐induced wave breaking. Key Points Wave energy dissipation on a degraded reef is dominated by wave breaking during near‐field storms and through bottom friction otherwise Spatial variability in sediment grain size (sand to gravel) is identified and correlated to modeled shear stress variability Sand is frequently resuspended, whereas mobility of reef gravel is confined to higher‐energy storm events</description><subject>Atmospheric circulation</subject><subject>barrier reef</subject><subject>Barrier reefs</subject><subject>Circulation patterns</subject><subject>Computational fluid dynamics</subject><subject>Coral reefs</subject><subject>Corals</subject><subject>degraded reef</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geophysics</subject><subject>Grain size distribution</subject><subject>Hydrodynamics</subject><subject>Incident waves</subject><subject>Mobility</subject><subject>Sediment</subject><subject>sediment dynamics</subject><subject>Sediment transport</subject><subject>Skewness</subject><subject>Spatial distribution</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Storms</subject><subject>Temperature (air-sea)</subject><subject>Transport</subject><subject>Tropical climate</subject><subject>Tropical depressions</subject><subject>Tropical storms</subject><subject>Wave analysis</subject><subject>Wave breaking</subject><subject>Wave energy</subject><subject>wave energy dissipation</subject><subject>Wave height</subject><subject>Wave power</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90FFLwzAQB_AgCg7dmx8g4KvVXNK0zaNU3RyTydTnkCZX6eiamWxKv70dE_HJe7l7-HHH_Qm5AHYNjKsbzqCYlQxEofgRGXHIVKK4guPfOZenZBzjig1VQJGmakQW094F7_rOrBsbqekcfUHXrLHb0idfNW2z7elz8BZjxEgXnxiooXf4HozDve2aFmnpg2npErE-Jye1aSOOf_oZeXu4fy2nyXwxeSxv54kRWSETZZkCg3WWAbdMIIJxLLWuskYqZ1JeKKgyEMZZA1jVTIKTQqUyy3NnQYozcnnYuwn-Y4dxq1d-F7rhpOYg8ixleS4GdXVQNvgYA9Z6E5q1Cb0Gpvep6b-pDVwc-NfwVP-v1bPJsuQChBTfbx1sxw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Torres‐Garcia, Legna M.</creator><creator>Dalyander, P. Soupy</creator><creator>Long, Joseph W.</creator><creator>Zawada, David G.</creator><creator>Yates, Kimberly K.</creator><creator>Moore, Christopher</creator><creator>Olabarrieta, Maitane</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2912-1992</orcidid><orcidid>https://orcid.org/0000-0003-4547-4878</orcidid><orcidid>https://orcid.org/0000-0003-3210-4878</orcidid><orcidid>https://orcid.org/0000-0002-6786-5944</orcidid><orcidid>https://orcid.org/0000-0001-8764-0358</orcidid><orcidid>https://orcid.org/0000-0002-7619-7992</orcidid><orcidid>https://orcid.org/0000-0001-9583-0872</orcidid></search><sort><creationdate>201810</creationdate><title>Hydrodynamics and Sediment Mobility Processes Over a Degraded Senile Coral Reef</title><author>Torres‐Garcia, Legna M. ; Dalyander, P. Soupy ; Long, Joseph W. ; Zawada, David G. ; Yates, Kimberly K. ; Moore, Christopher ; Olabarrieta, Maitane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3685-9c091aef6612c03ee1ad04cdbca59da42891b613adca1ebf051d53945677dc153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric circulation</topic><topic>barrier reef</topic><topic>Barrier reefs</topic><topic>Circulation patterns</topic><topic>Computational fluid dynamics</topic><topic>Coral reefs</topic><topic>Corals</topic><topic>degraded reef</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geophysics</topic><topic>Grain size distribution</topic><topic>Hydrodynamics</topic><topic>Incident waves</topic><topic>Mobility</topic><topic>Sediment</topic><topic>sediment dynamics</topic><topic>Sediment transport</topic><topic>Skewness</topic><topic>Spatial distribution</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Storms</topic><topic>Temperature (air-sea)</topic><topic>Transport</topic><topic>Tropical climate</topic><topic>Tropical depressions</topic><topic>Tropical storms</topic><topic>Wave analysis</topic><topic>Wave breaking</topic><topic>Wave energy</topic><topic>wave energy dissipation</topic><topic>Wave height</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres‐Garcia, Legna M.</creatorcontrib><creatorcontrib>Dalyander, P. Soupy</creatorcontrib><creatorcontrib>Long, Joseph W.</creatorcontrib><creatorcontrib>Zawada, David G.</creatorcontrib><creatorcontrib>Yates, Kimberly K.</creatorcontrib><creatorcontrib>Moore, Christopher</creatorcontrib><creatorcontrib>Olabarrieta, Maitane</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres‐Garcia, Legna M.</au><au>Dalyander, P. Soupy</au><au>Long, Joseph W.</au><au>Zawada, David G.</au><au>Yates, Kimberly K.</au><au>Moore, Christopher</au><au>Olabarrieta, Maitane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamics and Sediment Mobility Processes Over a Degraded Senile Coral Reef</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2018-10</date><risdate>2018</risdate><volume>123</volume><issue>10</issue><spage>7053</spage><epage>7066</epage><pages>7053-7066</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>Coral reefs can influence hydrodynamics and morphodynamics by dissipating and refracting incident wave energy, modifying circulation patterns, and altering sediment transport pathways. In this study, the sediment and hydrodynamic response of a senile (dead) barrier reef (Crocker Reef, located in the upper portion of the Florida Reef Tract) to storms and quiescent conditions was evaluated using field observations and the Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport model. Waves, circulation, and resultant sediment mobility were modeled across different reef zones. Sediment mobility during quiescent periods and the passage of far‐field storms are driven by nonbreaking waves and, to a lesser degree, regional circulation. Spatial variability in these processes produces the present‐day distribution of sediment grain size at Crocker Reef, wherein finer‐grain material along a shallow central ridge is frequently mobilized (43% to 62% of the time), winnowed away, and deposited along the lower‐energy flanks and in the fore reef where sand mobility occurs less frequently (32% to 43% and 1% to 22% of the time, respectively). Analysis of wave conditions for the period of 2006–2014 supports that wave heights rarely exceed the threshold for breaking (0.1% and 0.3% at the reef crest and at the reef flat, respectively), predominantly during the passage of tropical storms. There is a shift to a wave‐breaking regime during near‐field storms, creating the potential for mobilization of larger material and enhanced reef degradation. Sediment mobility can be enhanced due to wave skewness or the generation of free infragravity waves during periods of depth‐induced wave breaking. Key Points Wave energy dissipation on a degraded reef is dominated by wave breaking during near‐field storms and through bottom friction otherwise Spatial variability in sediment grain size (sand to gravel) is identified and correlated to modeled shear stress variability Sand is frequently resuspended, whereas mobility of reef gravel is confined to higher‐energy storm events</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JC013892</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2912-1992</orcidid><orcidid>https://orcid.org/0000-0003-4547-4878</orcidid><orcidid>https://orcid.org/0000-0003-3210-4878</orcidid><orcidid>https://orcid.org/0000-0002-6786-5944</orcidid><orcidid>https://orcid.org/0000-0001-8764-0358</orcidid><orcidid>https://orcid.org/0000-0002-7619-7992</orcidid><orcidid>https://orcid.org/0000-0001-9583-0872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2018-10, Vol.123 (10), p.7053-7066
issn 2169-9275
2169-9291
language eng
recordid cdi_proquest_journals_2137640773
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Atmospheric circulation
barrier reef
Barrier reefs
Circulation patterns
Computational fluid dynamics
Coral reefs
Corals
degraded reef
Fluid flow
Fluid mechanics
Geophysics
Grain size distribution
Hydrodynamics
Incident waves
Mobility
Sediment
sediment dynamics
Sediment transport
Skewness
Spatial distribution
Spatial variability
Spatial variations
Storms
Temperature (air-sea)
Transport
Tropical climate
Tropical depressions
Tropical storms
Wave analysis
Wave breaking
Wave energy
wave energy dissipation
Wave height
Wave power
title Hydrodynamics and Sediment Mobility Processes Over a Degraded Senile Coral Reef
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamics%20and%20Sediment%20Mobility%20Processes%20Over%20a%20Degraded%20Senile%20Coral%20Reef&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Torres%E2%80%90Garcia,%20Legna%20M.&rft.date=2018-10&rft.volume=123&rft.issue=10&rft.spage=7053&rft.epage=7066&rft.pages=7053-7066&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1029/2018JC013892&rft_dat=%3Cproquest_cross%3E2137640773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137640773&rft_id=info:pmid/&rfr_iscdi=true