Back-propagation pattern recognizers for X control charts: Methodology and performance
A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a...
Gespeichert in:
Veröffentlicht in: | Computers & industrial engineering 1993-04, Vol.24 (2), p.219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 219 |
container_title | Computers & industrial engineering |
container_volume | 24 |
creator | Hwarng, H Brian Hubele, Norma Faris |
description | A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a pattern, such as a trend or cycle, exists in the data. The foundation of the algorithm is based on the neural network concepts of constructing and training a network in the types of patterns to be detected. These concepts mimic the trained operator's ability to detect patterns. The pattern recognizer is trained and tested with the consideration of Type I error (finding a pattern where none existed) as well as Type II error (failing to detect a known pattern). Performance measures sensitive to these types of errors are used to evaluate the algorithm's performance on an extensive series of simulated patterns of control chart data. |
doi_str_mv | 10.1016/0360-8352(93)90010-U |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_213755744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1018411</sourcerecordid><originalsourceid>FETCH-LOGICAL-p95t-a4a425faa4ac1872ccd28713cec28bcc681f15b9c6d590e5175682924d7b6db33</originalsourceid><addsrcrecordid>eNo9j7tOwzAUhi0EEqXwBgwWEwyGYzuOYzaouElFLAWxVc6Jk7YEO9juUJ6eSCCmb_n0Xwg55XDJgZdXIEtglVTi3MgLA8CBve6RCa-0YaAU7JPJv3JIjlLaAEChDJ-Qt1uLH2yIYbCdzevg6WBzdtHT6DB0fv3tYqJtiPSdYvA5hp7iysacrumzy6vQhD50O2p9QwcXR_HTenTH5KC1fXInf5ySxf3dYvbI5i8PT7ObORuMyswWthCqtSNxHCsQG1FpLtGhqGrEsuItV7XBslEGnOJalZUwomh0XTa1lFNy9hs7HvjaupSXm7CNfmxcCi61Uroo5A-bnFRp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213755744</pqid></control><display><type>article</type><title>Back-propagation pattern recognizers for X control charts: Methodology and performance</title><source>Elsevier ScienceDirect Journals</source><creator>Hwarng, H Brian ; Hubele, Norma Faris</creator><creatorcontrib>Hwarng, H Brian ; Hubele, Norma Faris</creatorcontrib><description>A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a pattern, such as a trend or cycle, exists in the data. The foundation of the algorithm is based on the neural network concepts of constructing and training a network in the types of patterns to be detected. These concepts mimic the trained operator's ability to detect patterns. The pattern recognizer is trained and tested with the consideration of Type I error (finding a pattern where none existed) as well as Type II error (failing to detect a known pattern). Performance measures sensitive to these types of errors are used to evaluate the algorithm's performance on an extensive series of simulated patterns of control chart data.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/0360-8352(93)90010-U</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Pergamon Press Inc</publisher><subject>Algorithms ; Back propagation ; Control charts ; Process controls ; Statistical process control ; Studies</subject><ispartof>Computers & industrial engineering, 1993-04, Vol.24 (2), p.219</ispartof><rights>Copyright Pergamon Press Inc. Apr 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hwarng, H Brian</creatorcontrib><creatorcontrib>Hubele, Norma Faris</creatorcontrib><title>Back-propagation pattern recognizers for X control charts: Methodology and performance</title><title>Computers & industrial engineering</title><description>A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a pattern, such as a trend or cycle, exists in the data. The foundation of the algorithm is based on the neural network concepts of constructing and training a network in the types of patterns to be detected. These concepts mimic the trained operator's ability to detect patterns. The pattern recognizer is trained and tested with the consideration of Type I error (finding a pattern where none existed) as well as Type II error (failing to detect a known pattern). Performance measures sensitive to these types of errors are used to evaluate the algorithm's performance on an extensive series of simulated patterns of control chart data.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Control charts</subject><subject>Process controls</subject><subject>Statistical process control</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9j7tOwzAUhi0EEqXwBgwWEwyGYzuOYzaouElFLAWxVc6Jk7YEO9juUJ6eSCCmb_n0Xwg55XDJgZdXIEtglVTi3MgLA8CBve6RCa-0YaAU7JPJv3JIjlLaAEChDJ-Qt1uLH2yIYbCdzevg6WBzdtHT6DB0fv3tYqJtiPSdYvA5hp7iysacrumzy6vQhD50O2p9QwcXR_HTenTH5KC1fXInf5ySxf3dYvbI5i8PT7ObORuMyswWthCqtSNxHCsQG1FpLtGhqGrEsuItV7XBslEGnOJalZUwomh0XTa1lFNy9hs7HvjaupSXm7CNfmxcCi61Uroo5A-bnFRp</recordid><startdate>19930401</startdate><enddate>19930401</enddate><creator>Hwarng, H Brian</creator><creator>Hubele, Norma Faris</creator><general>Pergamon Press Inc</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930401</creationdate><title>Back-propagation pattern recognizers for X control charts: Methodology and performance</title><author>Hwarng, H Brian ; Hubele, Norma Faris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p95t-a4a425faa4ac1872ccd28713cec28bcc681f15b9c6d590e5175682924d7b6db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Control charts</topic><topic>Process controls</topic><topic>Statistical process control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwarng, H Brian</creatorcontrib><creatorcontrib>Hubele, Norma Faris</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwarng, H Brian</au><au>Hubele, Norma Faris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back-propagation pattern recognizers for X control charts: Methodology and performance</atitle><jtitle>Computers & industrial engineering</jtitle><date>1993-04-01</date><risdate>1993</risdate><volume>24</volume><issue>2</issue><spage>219</spage><pages>219-</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a pattern, such as a trend or cycle, exists in the data. The foundation of the algorithm is based on the neural network concepts of constructing and training a network in the types of patterns to be detected. These concepts mimic the trained operator's ability to detect patterns. The pattern recognizer is trained and tested with the consideration of Type I error (finding a pattern where none existed) as well as Type II error (failing to detect a known pattern). Performance measures sensitive to these types of errors are used to evaluate the algorithm's performance on an extensive series of simulated patterns of control chart data.</abstract><cop>New York</cop><pub>Pergamon Press Inc</pub><doi>10.1016/0360-8352(93)90010-U</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 1993-04, Vol.24 (2), p.219 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_proquest_journals_213755744 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Back propagation Control charts Process controls Statistical process control Studies |
title | Back-propagation pattern recognizers for X control charts: Methodology and performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back-propagation%20pattern%20recognizers%20for%20X%20control%20charts:%20Methodology%20and%20performance&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Hwarng,%20H%20Brian&rft.date=1993-04-01&rft.volume=24&rft.issue=2&rft.spage=219&rft.pages=219-&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/0360-8352(93)90010-U&rft_dat=%3Cproquest%3E1018411%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213755744&rft_id=info:pmid/&rfr_iscdi=true |