Back-propagation pattern recognizers for X control charts: Methodology and performance

A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 1993-04, Vol.24 (2), p.219
Hauptverfasser: Hwarng, H Brian, Hubele, Norma Faris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 219
container_title Computers & industrial engineering
container_volume 24
creator Hwarng, H Brian
Hubele, Norma Faris
description A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a pattern, such as a trend or cycle, exists in the data. The foundation of the algorithm is based on the neural network concepts of constructing and training a network in the types of patterns to be detected. These concepts mimic the trained operator's ability to detect patterns. The pattern recognizer is trained and tested with the consideration of Type I error (finding a pattern where none existed) as well as Type II error (failing to detect a known pattern). Performance measures sensitive to these types of errors are used to evaluate the algorithm's performance on an extensive series of simulated patterns of control chart data.
doi_str_mv 10.1016/0360-8352(93)90010-U
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_213755744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1018411</sourcerecordid><originalsourceid>FETCH-LOGICAL-p95t-a4a425faa4ac1872ccd28713cec28bcc681f15b9c6d590e5175682924d7b6db33</originalsourceid><addsrcrecordid>eNo9j7tOwzAUhi0EEqXwBgwWEwyGYzuOYzaouElFLAWxVc6Jk7YEO9juUJ6eSCCmb_n0Xwg55XDJgZdXIEtglVTi3MgLA8CBve6RCa-0YaAU7JPJv3JIjlLaAEChDJ-Qt1uLH2yIYbCdzevg6WBzdtHT6DB0fv3tYqJtiPSdYvA5hp7iysacrumzy6vQhD50O2p9QwcXR_HTenTH5KC1fXInf5ySxf3dYvbI5i8PT7ObORuMyswWthCqtSNxHCsQG1FpLtGhqGrEsuItV7XBslEGnOJalZUwomh0XTa1lFNy9hs7HvjaupSXm7CNfmxcCi61Uroo5A-bnFRp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213755744</pqid></control><display><type>article</type><title>Back-propagation pattern recognizers for X control charts: Methodology and performance</title><source>Elsevier ScienceDirect Journals</source><creator>Hwarng, H Brian ; Hubele, Norma Faris</creator><creatorcontrib>Hwarng, H Brian ; Hubele, Norma Faris</creatorcontrib><description>A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a pattern, such as a trend or cycle, exists in the data. The foundation of the algorithm is based on the neural network concepts of constructing and training a network in the types of patterns to be detected. These concepts mimic the trained operator's ability to detect patterns. The pattern recognizer is trained and tested with the consideration of Type I error (finding a pattern where none existed) as well as Type II error (failing to detect a known pattern). Performance measures sensitive to these types of errors are used to evaluate the algorithm's performance on an extensive series of simulated patterns of control chart data.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/0360-8352(93)90010-U</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Pergamon Press Inc</publisher><subject>Algorithms ; Back propagation ; Control charts ; Process controls ; Statistical process control ; Studies</subject><ispartof>Computers &amp; industrial engineering, 1993-04, Vol.24 (2), p.219</ispartof><rights>Copyright Pergamon Press Inc. Apr 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hwarng, H Brian</creatorcontrib><creatorcontrib>Hubele, Norma Faris</creatorcontrib><title>Back-propagation pattern recognizers for X control charts: Methodology and performance</title><title>Computers &amp; industrial engineering</title><description>A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a pattern, such as a trend or cycle, exists in the data. The foundation of the algorithm is based on the neural network concepts of constructing and training a network in the types of patterns to be detected. These concepts mimic the trained operator's ability to detect patterns. The pattern recognizer is trained and tested with the consideration of Type I error (finding a pattern where none existed) as well as Type II error (failing to detect a known pattern). Performance measures sensitive to these types of errors are used to evaluate the algorithm's performance on an extensive series of simulated patterns of control chart data.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Control charts</subject><subject>Process controls</subject><subject>Statistical process control</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9j7tOwzAUhi0EEqXwBgwWEwyGYzuOYzaouElFLAWxVc6Jk7YEO9juUJ6eSCCmb_n0Xwg55XDJgZdXIEtglVTi3MgLA8CBve6RCa-0YaAU7JPJv3JIjlLaAEChDJ-Qt1uLH2yIYbCdzevg6WBzdtHT6DB0fv3tYqJtiPSdYvA5hp7iysacrumzy6vQhD50O2p9QwcXR_HTenTH5KC1fXInf5ySxf3dYvbI5i8PT7ObORuMyswWthCqtSNxHCsQG1FpLtGhqGrEsuItV7XBslEGnOJalZUwomh0XTa1lFNy9hs7HvjaupSXm7CNfmxcCi61Uroo5A-bnFRp</recordid><startdate>19930401</startdate><enddate>19930401</enddate><creator>Hwarng, H Brian</creator><creator>Hubele, Norma Faris</creator><general>Pergamon Press Inc</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930401</creationdate><title>Back-propagation pattern recognizers for X control charts: Methodology and performance</title><author>Hwarng, H Brian ; Hubele, Norma Faris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p95t-a4a425faa4ac1872ccd28713cec28bcc681f15b9c6d590e5175682924d7b6db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Control charts</topic><topic>Process controls</topic><topic>Statistical process control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwarng, H Brian</creatorcontrib><creatorcontrib>Hubele, Norma Faris</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwarng, H Brian</au><au>Hubele, Norma Faris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back-propagation pattern recognizers for X control charts: Methodology and performance</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>1993-04-01</date><risdate>1993</risdate><volume>24</volume><issue>2</issue><spage>219</spage><pages>219-</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>A control chart pattern recognition methodology based on the back-propagation algorithm, a neural computing theory, is presented. This classification algorithm, suitable for real-time statistical process control, evaluates observations routinely collected for control charting to determine whether a pattern, such as a trend or cycle, exists in the data. The foundation of the algorithm is based on the neural network concepts of constructing and training a network in the types of patterns to be detected. These concepts mimic the trained operator's ability to detect patterns. The pattern recognizer is trained and tested with the consideration of Type I error (finding a pattern where none existed) as well as Type II error (failing to detect a known pattern). Performance measures sensitive to these types of errors are used to evaluate the algorithm's performance on an extensive series of simulated patterns of control chart data.</abstract><cop>New York</cop><pub>Pergamon Press Inc</pub><doi>10.1016/0360-8352(93)90010-U</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 1993-04, Vol.24 (2), p.219
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_journals_213755744
source Elsevier ScienceDirect Journals
subjects Algorithms
Back propagation
Control charts
Process controls
Statistical process control
Studies
title Back-propagation pattern recognizers for X control charts: Methodology and performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back-propagation%20pattern%20recognizers%20for%20X%20control%20charts:%20Methodology%20and%20performance&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Hwarng,%20H%20Brian&rft.date=1993-04-01&rft.volume=24&rft.issue=2&rft.spage=219&rft.pages=219-&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/0360-8352(93)90010-U&rft_dat=%3Cproquest%3E1018411%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213755744&rft_id=info:pmid/&rfr_iscdi=true