Fuzzy logic control of aggregate production planning

Rinks used linguistic variables of the sort proposed by Zadeh for cost, inventory, production, and work force. He operated on these with fuzzy if-ten rules in a manner like that used by Mamdani and Assilan to control a steam engine. The Rinks membership functions and rules were subjective creations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 1992-11, Vol.23 (1), p.137-140
Hauptverfasser: Ward, T.L., Ralston, P.A.S., Davis, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 1
container_start_page 137
container_title Computers & industrial engineering
container_volume 23
creator Ward, T.L.
Ralston, P.A.S.
Davis, J.A.
description Rinks used linguistic variables of the sort proposed by Zadeh for cost, inventory, production, and work force. He operated on these with fuzzy if-ten rules in a manner like that used by Mamdani and Assilan to control a steam engine. The Rinks membership functions and rules were subjective creations. Nevertheless, he obtained results that compared favorably to both prior and subsequent heuristic treatments of the HMMS data. We have developed a C language fuzzy logic controller (FLC) that uses the Rinks discrete membership functions and closely reproduces his results. We have used this FLC to investigate the effect of granularity of the discretization on the quality of solution. We have also used Wang-Mendel learning to improve the rule base. This paper discusses these results and suggests areas for further investigation.
doi_str_mv 10.1016/0360-8352(92)90082-U
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213755523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>036083529290082U</els_id><sourcerecordid>1018335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-34847408f6c36306c76ab7cba9c7db1801ecce7348a30feb7257710a4d0f99ca3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw9FPOihOmmSprkIsrgqLHhxzyFN05KlJmvSCru_3pRdPAoDw8D35s0bhK4xPGDA5SOQEvKKsOJOFPcCoCry9Qma4YqLHBiDUzT7Q87RRYwbAKBM4Bmiy3G_32W976zOtHdD8H3m20x1XTCdGky2Db4Z9WC9y7a9cs667hKdtaqP5urY52i9fPlcvOWrj9f3xfMq18ltyAmtKKdQtWWaCZSal6rmulZC86bGFWCjteEJUwRaU_OCcY5B0QZaIbQic3Rz2Jtu-B5NHOTGj8ElS1lgwhljBUkQPUA6-BiDaeU22C8VdhKDnN4jp-xyyi5Fquk9cp1kt8fdKmrVt0E5beOflpa0BMwT9nTATMr5Y02QUVvjtGlsMHqQjbf_-_wCGRp35g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213755523</pqid></control><display><type>article</type><title>Fuzzy logic control of aggregate production planning</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ward, T.L. ; Ralston, P.A.S. ; Davis, J.A.</creator><creatorcontrib>Ward, T.L. ; Ralston, P.A.S. ; Davis, J.A.</creatorcontrib><description>Rinks used linguistic variables of the sort proposed by Zadeh for cost, inventory, production, and work force. He operated on these with fuzzy if-ten rules in a manner like that used by Mamdani and Assilan to control a steam engine. The Rinks membership functions and rules were subjective creations. Nevertheless, he obtained results that compared favorably to both prior and subsequent heuristic treatments of the HMMS data. We have developed a C language fuzzy logic controller (FLC) that uses the Rinks discrete membership functions and closely reproduces his results. We have used this FLC to investigate the effect of granularity of the discretization on the quality of solution. We have also used Wang-Mendel learning to improve the rule base. This paper discusses these results and suggests areas for further investigation.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/0360-8352(92)90082-U</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>Seoul: Elsevier Ltd</publisher><subject>Algorithms ; Applications ; Applied sciences ; Controllers ; Exact sciences and technology ; Fuzzy logic ; Logic ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Planning. Forecasting ; Production planning ; Studies</subject><ispartof>Computers &amp; industrial engineering, 1992-11, Vol.23 (1), p.137-140</ispartof><rights>1992</rights><rights>1993 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Nov 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-34847408f6c36306c76ab7cba9c7db1801ecce7348a30feb7257710a4d0f99ca3</citedby><cites>FETCH-LOGICAL-c360t-34847408f6c36306c76ab7cba9c7db1801ecce7348a30feb7257710a4d0f99ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0360-8352(92)90082-U$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4646017$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, T.L.</creatorcontrib><creatorcontrib>Ralston, P.A.S.</creatorcontrib><creatorcontrib>Davis, J.A.</creatorcontrib><title>Fuzzy logic control of aggregate production planning</title><title>Computers &amp; industrial engineering</title><description>Rinks used linguistic variables of the sort proposed by Zadeh for cost, inventory, production, and work force. He operated on these with fuzzy if-ten rules in a manner like that used by Mamdani and Assilan to control a steam engine. The Rinks membership functions and rules were subjective creations. Nevertheless, he obtained results that compared favorably to both prior and subsequent heuristic treatments of the HMMS data. We have developed a C language fuzzy logic controller (FLC) that uses the Rinks discrete membership functions and closely reproduces his results. We have used this FLC to investigate the effect of granularity of the discretization on the quality of solution. We have also used Wang-Mendel learning to improve the rule base. This paper discusses these results and suggests areas for further investigation.</description><subject>Algorithms</subject><subject>Applications</subject><subject>Applied sciences</subject><subject>Controllers</subject><subject>Exact sciences and technology</subject><subject>Fuzzy logic</subject><subject>Logic</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Planning. Forecasting</subject><subject>Production planning</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw9FPOihOmmSprkIsrgqLHhxzyFN05KlJmvSCru_3pRdPAoDw8D35s0bhK4xPGDA5SOQEvKKsOJOFPcCoCry9Qma4YqLHBiDUzT7Q87RRYwbAKBM4Bmiy3G_32W976zOtHdD8H3m20x1XTCdGky2Db4Z9WC9y7a9cs667hKdtaqP5urY52i9fPlcvOWrj9f3xfMq18ltyAmtKKdQtWWaCZSal6rmulZC86bGFWCjteEJUwRaU_OCcY5B0QZaIbQic3Rz2Jtu-B5NHOTGj8ElS1lgwhljBUkQPUA6-BiDaeU22C8VdhKDnN4jp-xyyi5Fquk9cp1kt8fdKmrVt0E5beOflpa0BMwT9nTATMr5Y02QUVvjtGlsMHqQjbf_-_wCGRp35g</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>Ward, T.L.</creator><creator>Ralston, P.A.S.</creator><creator>Davis, J.A.</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19921101</creationdate><title>Fuzzy logic control of aggregate production planning</title><author>Ward, T.L. ; Ralston, P.A.S. ; Davis, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-34847408f6c36306c76ab7cba9c7db1801ecce7348a30feb7257710a4d0f99ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithms</topic><topic>Applications</topic><topic>Applied sciences</topic><topic>Controllers</topic><topic>Exact sciences and technology</topic><topic>Fuzzy logic</topic><topic>Logic</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Planning. Forecasting</topic><topic>Production planning</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, T.L.</creatorcontrib><creatorcontrib>Ralston, P.A.S.</creatorcontrib><creatorcontrib>Davis, J.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, T.L.</au><au>Ralston, P.A.S.</au><au>Davis, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy logic control of aggregate production planning</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>1992-11-01</date><risdate>1992</risdate><volume>23</volume><issue>1</issue><spage>137</spage><epage>140</epage><pages>137-140</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>Rinks used linguistic variables of the sort proposed by Zadeh for cost, inventory, production, and work force. He operated on these with fuzzy if-ten rules in a manner like that used by Mamdani and Assilan to control a steam engine. The Rinks membership functions and rules were subjective creations. Nevertheless, he obtained results that compared favorably to both prior and subsequent heuristic treatments of the HMMS data. We have developed a C language fuzzy logic controller (FLC) that uses the Rinks discrete membership functions and closely reproduces his results. We have used this FLC to investigate the effect of granularity of the discretization on the quality of solution. We have also used Wang-Mendel learning to improve the rule base. This paper discusses these results and suggests areas for further investigation.</abstract><cop>Seoul</cop><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/0360-8352(92)90082-U</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 1992-11, Vol.23 (1), p.137-140
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_journals_213755523
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Applications
Applied sciences
Controllers
Exact sciences and technology
Fuzzy logic
Logic
Operational research and scientific management
Operational research. Management science
Operations research
Planning. Forecasting
Production planning
Studies
title Fuzzy logic control of aggregate production planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20logic%20control%20of%20aggregate%20production%20planning&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Ward,%20T.L.&rft.date=1992-11-01&rft.volume=23&rft.issue=1&rft.spage=137&rft.epage=140&rft.pages=137-140&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/0360-8352(92)90082-U&rft_dat=%3Cproquest_cross%3E1018335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213755523&rft_id=info:pmid/&rft_els_id=036083529290082U&rfr_iscdi=true