Free fatty acid receptor 1 (FFA1R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion
Free fatty acids (FFA) have generally been proposed to regulate pancreatic insulin release by an intracellular mechanism involving inhibition of CPT-1. The recently de-orphanized G-protein coupled receptor, FFA1R/GPR40, has been shown to be essential for fatty-acid-stimulated insulin release in MIN6...
Gespeichert in:
Veröffentlicht in: | Cell and tissue research 2005-11, Vol.322 (2), p.207-215 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Free fatty acids (FFA) have generally been proposed to regulate pancreatic insulin release by an intracellular mechanism involving inhibition of CPT-1. The recently de-orphanized G-protein coupled receptor, FFA1R/GPR40, has been shown to be essential for fatty-acid-stimulated insulin release in MIN6 mouse insulinoma cells. The CPT-1 inhibitor, 2-bromo palmitate (2BrP), was investigated for its ability to interact with mouse FFA1R/GPR40. It was found to inhibit phosphatidyl inositol hydrolysis induced by linoleic acid (LA) (100 μM in all experiments) in HEK293 cells transfected with FFA1R/GPR40 and in the MIN6 subclone, MIN6c4. 2BrP also inhibited LA-stimulated insulin release from mouse pancreatic islets. Mouse islets were subjected to antisense intervention by treatment with a FFA1R/GPR40-specific morpholino oligonucleotide for 48 h. Antisense treatment of islets suppressed LA-stimulated insulin release by 50% and by almost 100% when islets were pretreated with LA for 30 min before applying the antisense. Antisense treatment had no effect on tolbutamide-stimulated insulin release. Confocal microscopy using an FFA1R/GPR40-specific antibody revealed receptor expression largely localized to the plasma membrane of insulin-producing cells. Pretreating the islets with LA for 30 min followed by antisense oligonucleotide treatment for 48 h reduced the FFA1R/GPR40 immunoreactivity to background levels. The results demonstrate that FFA1R/GPR40 is inhibited by the CPT-1 inhibitor, 2BrP, and confirm that FFA1R/GPR40 is indeed necessary, at least in part, for fatty-acid-stimulated insulin release. |
---|---|
ISSN: | 0302-766X 1432-0878 |
DOI: | 10.1007/s00441-005-0017-z |