Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells

Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2018-07, Vol.3 (7), p.574-581
Hauptverfasser: Elouarzaki, Kamal, Cheng, Daojian, Fisher, Adrian C., Lee, Jong-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 581
container_issue 7
container_start_page 574
container_title Nature energy
container_volume 3
creator Elouarzaki, Kamal
Cheng, Daojian
Fisher, Adrian C.
Lee, Jong-Min
description Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm −2 and 7.9 mW cm −2 , respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells. Enzymatic fuel cells use enzymes for the redox reactions of fuels, and electron transfer is a key process in generating electricity. Here, the authors develop a redox mediator that is able to both immobilize the enzyme and mediate electron transfer, leading to much-enhanced power densities in fuel cells.
doi_str_mv 10.1038/s41560-018-0166-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137523283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137523283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4f2a4b3c1ed4a1906e4889708acee0ffb9f77ae76994cfb32b2cd9f92386c6a03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWLQ_wFvA82q-NpscpfgFBS96DtnspKZsk5psD_33pqygFw_DzMDzzsCD0A0ld5RwdV8EbSVpCFW1pGzEGVow0qqma4U8_zNfomUpW0II04y1ii4QrNJhP4a4wSkHiJOdQorYxgHvYAjzVqZsJ9gEKNinjMH74E4shhHclCtRgVg8ZBwi_jz2OQy4D8kfYMQOxrFcowtvxwLLn36FPp4e31cvzfrt-XX1sG4cV2xqhGdW9NxRGISlmkgQSumOKOsAiPe99l1noZNaC-d7znrmBu0140o6aQm_Qrfz3X1OXwcok9mmQ471pWGUdy3jTPFK0ZlyOZWSwZt9Djubj4YScxJqZqGmCjUnoUbUDJszpbJxA_n38v-hb9Hrelg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137523283</pqid></control><display><type>article</type><title>Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Elouarzaki, Kamal ; Cheng, Daojian ; Fisher, Adrian C. ; Lee, Jong-Min</creator><creatorcontrib>Elouarzaki, Kamal ; Cheng, Daojian ; Fisher, Adrian C. ; Lee, Jong-Min</creatorcontrib><description>Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm −2 and 7.9 mW cm −2 , respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells. Enzymatic fuel cells use enzymes for the redox reactions of fuels, and electron transfer is a key process in generating electricity. Here, the authors develop a redox mediator that is able to both immobilize the enzyme and mediate electron transfer, leading to much-enhanced power densities in fuel cells.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-018-0166-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/898 ; 639/4077/893 ; 639/638/161 ; Biochemical fuel cells ; Biofuels ; Biological activity ; Carbon nanotubes ; Coupling ; Economics and Management ; Electrocatalysts ; Electron transfer ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Enzymes ; Fuel cells ; Fuel technology ; Immobilization ; Mediation ; Mediators ; Nanotechnology ; Nanotubes ; Orientation ; Proton exchange membrane fuel cells ; Pyrene ; Renewable and Green Energy ; Sulfonic acid</subject><ispartof>Nature energy, 2018-07, Vol.3 (7), p.574-581</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4f2a4b3c1ed4a1906e4889708acee0ffb9f77ae76994cfb32b2cd9f92386c6a03</citedby><cites>FETCH-LOGICAL-c382t-4f2a4b3c1ed4a1906e4889708acee0ffb9f77ae76994cfb32b2cd9f92386c6a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-018-0166-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-018-0166-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Elouarzaki, Kamal</creatorcontrib><creatorcontrib>Cheng, Daojian</creatorcontrib><creatorcontrib>Fisher, Adrian C.</creatorcontrib><creatorcontrib>Lee, Jong-Min</creatorcontrib><title>Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm −2 and 7.9 mW cm −2 , respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells. Enzymatic fuel cells use enzymes for the redox reactions of fuels, and electron transfer is a key process in generating electricity. Here, the authors develop a redox mediator that is able to both immobilize the enzyme and mediate electron transfer, leading to much-enhanced power densities in fuel cells.</description><subject>639/166/898</subject><subject>639/4077/893</subject><subject>639/638/161</subject><subject>Biochemical fuel cells</subject><subject>Biofuels</subject><subject>Biological activity</subject><subject>Carbon nanotubes</subject><subject>Coupling</subject><subject>Economics and Management</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Enzymes</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Immobilization</subject><subject>Mediation</subject><subject>Mediators</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Orientation</subject><subject>Proton exchange membrane fuel cells</subject><subject>Pyrene</subject><subject>Renewable and Green Energy</subject><subject>Sulfonic acid</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWLQ_wFvA82q-NpscpfgFBS96DtnspKZsk5psD_33pqygFw_DzMDzzsCD0A0ld5RwdV8EbSVpCFW1pGzEGVow0qqma4U8_zNfomUpW0II04y1ii4QrNJhP4a4wSkHiJOdQorYxgHvYAjzVqZsJ9gEKNinjMH74E4shhHclCtRgVg8ZBwi_jz2OQy4D8kfYMQOxrFcowtvxwLLn36FPp4e31cvzfrt-XX1sG4cV2xqhGdW9NxRGISlmkgQSumOKOsAiPe99l1noZNaC-d7znrmBu0140o6aQm_Qrfz3X1OXwcok9mmQ471pWGUdy3jTPFK0ZlyOZWSwZt9Djubj4YScxJqZqGmCjUnoUbUDJszpbJxA_n38v-hb9Hrelg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Elouarzaki, Kamal</creator><creator>Cheng, Daojian</creator><creator>Fisher, Adrian C.</creator><creator>Lee, Jong-Min</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells</title><author>Elouarzaki, Kamal ; Cheng, Daojian ; Fisher, Adrian C. ; Lee, Jong-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4f2a4b3c1ed4a1906e4889708acee0ffb9f77ae76994cfb32b2cd9f92386c6a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/166/898</topic><topic>639/4077/893</topic><topic>639/638/161</topic><topic>Biochemical fuel cells</topic><topic>Biofuels</topic><topic>Biological activity</topic><topic>Carbon nanotubes</topic><topic>Coupling</topic><topic>Economics and Management</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Enzymes</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Immobilization</topic><topic>Mediation</topic><topic>Mediators</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Orientation</topic><topic>Proton exchange membrane fuel cells</topic><topic>Pyrene</topic><topic>Renewable and Green Energy</topic><topic>Sulfonic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elouarzaki, Kamal</creatorcontrib><creatorcontrib>Cheng, Daojian</creatorcontrib><creatorcontrib>Fisher, Adrian C.</creatorcontrib><creatorcontrib>Lee, Jong-Min</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elouarzaki, Kamal</au><au>Cheng, Daojian</au><au>Fisher, Adrian C.</au><au>Lee, Jong-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>3</volume><issue>7</issue><spage>574</spage><epage>581</epage><pages>574-581</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm −2 and 7.9 mW cm −2 , respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells. Enzymatic fuel cells use enzymes for the redox reactions of fuels, and electron transfer is a key process in generating electricity. Here, the authors develop a redox mediator that is able to both immobilize the enzyme and mediate electron transfer, leading to much-enhanced power densities in fuel cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-018-0166-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2018-07, Vol.3 (7), p.574-581
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2137523283
source SpringerLink Journals - AutoHoldings
subjects 639/166/898
639/4077/893
639/638/161
Biochemical fuel cells
Biofuels
Biological activity
Carbon nanotubes
Coupling
Economics and Management
Electrocatalysts
Electron transfer
Energy
Energy Policy
Energy Storage
Energy Systems
Enzymes
Fuel cells
Fuel technology
Immobilization
Mediation
Mediators
Nanotechnology
Nanotubes
Orientation
Proton exchange membrane fuel cells
Pyrene
Renewable and Green Energy
Sulfonic acid
title Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20orientation%20and%20mediation%20strategies%20for%20efficient%20electron%20transfer%20in%20hybrid%20biofuel%20cells&rft.jtitle=Nature%20energy&rft.au=Elouarzaki,%20Kamal&rft.date=2018-07-01&rft.volume=3&rft.issue=7&rft.spage=574&rft.epage=581&rft.pages=574-581&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-018-0166-4&rft_dat=%3Cproquest_cross%3E2137523283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137523283&rft_id=info:pmid/&rfr_iscdi=true