Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells
Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and elec...
Gespeichert in:
Veröffentlicht in: | Nature energy 2018-07, Vol.3 (7), p.574-581 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 581 |
---|---|
container_issue | 7 |
container_start_page | 574 |
container_title | Nature energy |
container_volume | 3 |
creator | Elouarzaki, Kamal Cheng, Daojian Fisher, Adrian C. Lee, Jong-Min |
description | Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm
−2
and 7.9 mW cm
−2
, respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells.
Enzymatic fuel cells use enzymes for the redox reactions of fuels, and electron transfer is a key process in generating electricity. Here, the authors develop a redox mediator that is able to both immobilize the enzyme and mediate electron transfer, leading to much-enhanced power densities in fuel cells. |
doi_str_mv | 10.1038/s41560-018-0166-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137523283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137523283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4f2a4b3c1ed4a1906e4889708acee0ffb9f77ae76994cfb32b2cd9f92386c6a03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWLQ_wFvA82q-NpscpfgFBS96DtnspKZsk5psD_33pqygFw_DzMDzzsCD0A0ld5RwdV8EbSVpCFW1pGzEGVow0qqma4U8_zNfomUpW0II04y1ii4QrNJhP4a4wSkHiJOdQorYxgHvYAjzVqZsJ9gEKNinjMH74E4shhHclCtRgVg8ZBwi_jz2OQy4D8kfYMQOxrFcowtvxwLLn36FPp4e31cvzfrt-XX1sG4cV2xqhGdW9NxRGISlmkgQSumOKOsAiPe99l1noZNaC-d7znrmBu0140o6aQm_Qrfz3X1OXwcok9mmQ471pWGUdy3jTPFK0ZlyOZWSwZt9Djubj4YScxJqZqGmCjUnoUbUDJszpbJxA_n38v-hb9Hrelg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137523283</pqid></control><display><type>article</type><title>Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Elouarzaki, Kamal ; Cheng, Daojian ; Fisher, Adrian C. ; Lee, Jong-Min</creator><creatorcontrib>Elouarzaki, Kamal ; Cheng, Daojian ; Fisher, Adrian C. ; Lee, Jong-Min</creatorcontrib><description>Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm
−2
and 7.9 mW cm
−2
, respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells.
Enzymatic fuel cells use enzymes for the redox reactions of fuels, and electron transfer is a key process in generating electricity. Here, the authors develop a redox mediator that is able to both immobilize the enzyme and mediate electron transfer, leading to much-enhanced power densities in fuel cells.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-018-0166-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/898 ; 639/4077/893 ; 639/638/161 ; Biochemical fuel cells ; Biofuels ; Biological activity ; Carbon nanotubes ; Coupling ; Economics and Management ; Electrocatalysts ; Electron transfer ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Enzymes ; Fuel cells ; Fuel technology ; Immobilization ; Mediation ; Mediators ; Nanotechnology ; Nanotubes ; Orientation ; Proton exchange membrane fuel cells ; Pyrene ; Renewable and Green Energy ; Sulfonic acid</subject><ispartof>Nature energy, 2018-07, Vol.3 (7), p.574-581</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4f2a4b3c1ed4a1906e4889708acee0ffb9f77ae76994cfb32b2cd9f92386c6a03</citedby><cites>FETCH-LOGICAL-c382t-4f2a4b3c1ed4a1906e4889708acee0ffb9f77ae76994cfb32b2cd9f92386c6a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-018-0166-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-018-0166-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Elouarzaki, Kamal</creatorcontrib><creatorcontrib>Cheng, Daojian</creatorcontrib><creatorcontrib>Fisher, Adrian C.</creatorcontrib><creatorcontrib>Lee, Jong-Min</creatorcontrib><title>Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm
−2
and 7.9 mW cm
−2
, respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells.
Enzymatic fuel cells use enzymes for the redox reactions of fuels, and electron transfer is a key process in generating electricity. Here, the authors develop a redox mediator that is able to both immobilize the enzyme and mediate electron transfer, leading to much-enhanced power densities in fuel cells.</description><subject>639/166/898</subject><subject>639/4077/893</subject><subject>639/638/161</subject><subject>Biochemical fuel cells</subject><subject>Biofuels</subject><subject>Biological activity</subject><subject>Carbon nanotubes</subject><subject>Coupling</subject><subject>Economics and Management</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Enzymes</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Immobilization</subject><subject>Mediation</subject><subject>Mediators</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Orientation</subject><subject>Proton exchange membrane fuel cells</subject><subject>Pyrene</subject><subject>Renewable and Green Energy</subject><subject>Sulfonic acid</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWLQ_wFvA82q-NpscpfgFBS96DtnspKZsk5psD_33pqygFw_DzMDzzsCD0A0ld5RwdV8EbSVpCFW1pGzEGVow0qqma4U8_zNfomUpW0II04y1ii4QrNJhP4a4wSkHiJOdQorYxgHvYAjzVqZsJ9gEKNinjMH74E4shhHclCtRgVg8ZBwi_jz2OQy4D8kfYMQOxrFcowtvxwLLn36FPp4e31cvzfrt-XX1sG4cV2xqhGdW9NxRGISlmkgQSumOKOsAiPe99l1noZNaC-d7znrmBu0140o6aQm_Qrfz3X1OXwcok9mmQ471pWGUdy3jTPFK0ZlyOZWSwZt9Djubj4YScxJqZqGmCjUnoUbUDJszpbJxA_n38v-hb9Hrelg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Elouarzaki, Kamal</creator><creator>Cheng, Daojian</creator><creator>Fisher, Adrian C.</creator><creator>Lee, Jong-Min</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells</title><author>Elouarzaki, Kamal ; Cheng, Daojian ; Fisher, Adrian C. ; Lee, Jong-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4f2a4b3c1ed4a1906e4889708acee0ffb9f77ae76994cfb32b2cd9f92386c6a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/166/898</topic><topic>639/4077/893</topic><topic>639/638/161</topic><topic>Biochemical fuel cells</topic><topic>Biofuels</topic><topic>Biological activity</topic><topic>Carbon nanotubes</topic><topic>Coupling</topic><topic>Economics and Management</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Enzymes</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Immobilization</topic><topic>Mediation</topic><topic>Mediators</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Orientation</topic><topic>Proton exchange membrane fuel cells</topic><topic>Pyrene</topic><topic>Renewable and Green Energy</topic><topic>Sulfonic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elouarzaki, Kamal</creatorcontrib><creatorcontrib>Cheng, Daojian</creatorcontrib><creatorcontrib>Fisher, Adrian C.</creatorcontrib><creatorcontrib>Lee, Jong-Min</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elouarzaki, Kamal</au><au>Cheng, Daojian</au><au>Fisher, Adrian C.</au><au>Lee, Jong-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>3</volume><issue>7</issue><spage>574</spage><epage>581</epage><pages>574-581</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm
−2
and 7.9 mW cm
−2
, respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells.
Enzymatic fuel cells use enzymes for the redox reactions of fuels, and electron transfer is a key process in generating electricity. Here, the authors develop a redox mediator that is able to both immobilize the enzyme and mediate electron transfer, leading to much-enhanced power densities in fuel cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-018-0166-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2018-07, Vol.3 (7), p.574-581 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_2137523283 |
source | SpringerLink Journals - AutoHoldings |
subjects | 639/166/898 639/4077/893 639/638/161 Biochemical fuel cells Biofuels Biological activity Carbon nanotubes Coupling Economics and Management Electrocatalysts Electron transfer Energy Energy Policy Energy Storage Energy Systems Enzymes Fuel cells Fuel technology Immobilization Mediation Mediators Nanotechnology Nanotubes Orientation Proton exchange membrane fuel cells Pyrene Renewable and Green Energy Sulfonic acid |
title | Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20orientation%20and%20mediation%20strategies%20for%20efficient%20electron%20transfer%20in%20hybrid%20biofuel%20cells&rft.jtitle=Nature%20energy&rft.au=Elouarzaki,%20Kamal&rft.date=2018-07-01&rft.volume=3&rft.issue=7&rft.spage=574&rft.epage=581&rft.pages=574-581&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-018-0166-4&rft_dat=%3Cproquest_cross%3E2137523283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137523283&rft_id=info:pmid/&rfr_iscdi=true |