A scalable, incremental learning algorithm for classification problems
In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values...
Gespeichert in:
Veröffentlicht in: | Computers & industrial engineering 2002-09, Vol.43 (4), p.677-692 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 4 |
container_start_page | 677 |
container_title | Computers & industrial engineering |
container_volume | 43 |
creator | Ye, Nong Li, Xiangyang |
description | In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis. |
doi_str_mv | 10.1016/S0360-8352(02)00132-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213746274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835202001328</els_id><sourcerecordid>228029231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c81a631f302c3e922d67990cad68cb15362aa6fa6c712dd812af4c893712d6643</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKePIBRBULB6krRpeyVjOBUGXqjX4ew0mRldq0kn-PambuilEAgHvv_8nI-xUw7XHLi6eQapIC1lLi5AXAJwKdJyj414WVQp5Dnss9EvcsiOQlgBQJZXfMRmkyQQNrhozFXiWvJmbdoem6Qx6FvXLhNslp13_ds6sZ1PqMEQnHWEveva5N13MbkOx-zAYhPMye4fs9fZ3cv0IZ0_3T9OJ_OUpMr6lEqOSnIrQZA0lRC1KqoKCGtV0oLnUglEZVFRwUVdl1ygzais5DAqlckxO9vujcUfGxN6veo2vo2VWnBZZEoUA5RvIfJdCN5Y_e7dGv2X5qAHY_rHmB50aIhvMBanMTvfLcfBifXYkgt_YVnFGFeRu91yJl766YzXgZxpydTOG-p13bl_mr4BsAF-wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213746274</pqid></control><display><type>article</type><title>A scalable, incremental learning algorithm for classification problems</title><source>Elsevier ScienceDirect Journals</source><creator>Ye, Nong ; Li, Xiangyang</creator><creatorcontrib>Ye, Nong ; Li, Xiangyang</creatorcontrib><description>In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/S0360-8352(02)00132-8</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>Seoul: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Classification ; Computer science; control theory; systems ; Data mining ; Decision trees ; Discriminant analysis ; Exact sciences and technology ; Incremental learning ; Information systems. Data bases ; Learning ; Memory organisation. Data processing ; Neural networks ; Scalability ; Software ; Studies</subject><ispartof>Computers & industrial engineering, 2002-09, Vol.43 (4), p.677-692</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-c81a631f302c3e922d67990cad68cb15362aa6fa6c712dd812af4c893712d6643</citedby><cites>FETCH-LOGICAL-c364t-c81a631f302c3e922d67990cad68cb15362aa6fa6c712dd812af4c893712d6643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835202001328$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13903616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Nong</creatorcontrib><creatorcontrib>Li, Xiangyang</creatorcontrib><title>A scalable, incremental learning algorithm for classification problems</title><title>Computers & industrial engineering</title><description>In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Exact sciences and technology</subject><subject>Incremental learning</subject><subject>Information systems. Data bases</subject><subject>Learning</subject><subject>Memory organisation. Data processing</subject><subject>Neural networks</subject><subject>Scalability</subject><subject>Software</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKePIBRBULB6krRpeyVjOBUGXqjX4ew0mRldq0kn-PambuilEAgHvv_8nI-xUw7XHLi6eQapIC1lLi5AXAJwKdJyj414WVQp5Dnss9EvcsiOQlgBQJZXfMRmkyQQNrhozFXiWvJmbdoem6Qx6FvXLhNslp13_ds6sZ1PqMEQnHWEveva5N13MbkOx-zAYhPMye4fs9fZ3cv0IZ0_3T9OJ_OUpMr6lEqOSnIrQZA0lRC1KqoKCGtV0oLnUglEZVFRwUVdl1ygzais5DAqlckxO9vujcUfGxN6veo2vo2VWnBZZEoUA5RvIfJdCN5Y_e7dGv2X5qAHY_rHmB50aIhvMBanMTvfLcfBifXYkgt_YVnFGFeRu91yJl766YzXgZxpydTOG-p13bl_mr4BsAF-wg</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Ye, Nong</creator><creator>Li, Xiangyang</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020901</creationdate><title>A scalable, incremental learning algorithm for classification problems</title><author>Ye, Nong ; Li, Xiangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c81a631f302c3e922d67990cad68cb15362aa6fa6c712dd812af4c893712d6643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Exact sciences and technology</topic><topic>Incremental learning</topic><topic>Information systems. Data bases</topic><topic>Learning</topic><topic>Memory organisation. Data processing</topic><topic>Neural networks</topic><topic>Scalability</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Nong</creatorcontrib><creatorcontrib>Li, Xiangyang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Nong</au><au>Li, Xiangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalable, incremental learning algorithm for classification problems</atitle><jtitle>Computers & industrial engineering</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>43</volume><issue>4</issue><spage>677</spage><epage>692</epage><pages>677-692</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis.</abstract><cop>Seoul</cop><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0360-8352(02)00132-8</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2002-09, Vol.43 (4), p.677-692 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_proquest_journals_213746274 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Classification Computer science control theory systems Data mining Decision trees Discriminant analysis Exact sciences and technology Incremental learning Information systems. Data bases Learning Memory organisation. Data processing Neural networks Scalability Software Studies |
title | A scalable, incremental learning algorithm for classification problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalable,%20incremental%20learning%20algorithm%20for%20classification%20problems&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Ye,%20Nong&rft.date=2002-09-01&rft.volume=43&rft.issue=4&rft.spage=677&rft.epage=692&rft.pages=677-692&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/S0360-8352(02)00132-8&rft_dat=%3Cproquest_cross%3E228029231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213746274&rft_id=info:pmid/&rft_els_id=S0360835202001328&rfr_iscdi=true |