A scalable, incremental learning algorithm for classification problems

In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2002-09, Vol.43 (4), p.677-692
Hauptverfasser: Ye, Nong, Li, Xiangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 4
container_start_page 677
container_title Computers & industrial engineering
container_volume 43
creator Ye, Nong
Li, Xiangyang
description In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis.
doi_str_mv 10.1016/S0360-8352(02)00132-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213746274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835202001328</els_id><sourcerecordid>228029231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c81a631f302c3e922d67990cad68cb15362aa6fa6c712dd812af4c893712d6643</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKePIBRBULB6krRpeyVjOBUGXqjX4ew0mRldq0kn-PambuilEAgHvv_8nI-xUw7XHLi6eQapIC1lLi5AXAJwKdJyj414WVQp5Dnss9EvcsiOQlgBQJZXfMRmkyQQNrhozFXiWvJmbdoem6Qx6FvXLhNslp13_ds6sZ1PqMEQnHWEveva5N13MbkOx-zAYhPMye4fs9fZ3cv0IZ0_3T9OJ_OUpMr6lEqOSnIrQZA0lRC1KqoKCGtV0oLnUglEZVFRwUVdl1ygzais5DAqlckxO9vujcUfGxN6veo2vo2VWnBZZEoUA5RvIfJdCN5Y_e7dGv2X5qAHY_rHmB50aIhvMBanMTvfLcfBifXYkgt_YVnFGFeRu91yJl766YzXgZxpydTOG-p13bl_mr4BsAF-wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213746274</pqid></control><display><type>article</type><title>A scalable, incremental learning algorithm for classification problems</title><source>Elsevier ScienceDirect Journals</source><creator>Ye, Nong ; Li, Xiangyang</creator><creatorcontrib>Ye, Nong ; Li, Xiangyang</creatorcontrib><description>In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/S0360-8352(02)00132-8</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>Seoul: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Classification ; Computer science; control theory; systems ; Data mining ; Decision trees ; Discriminant analysis ; Exact sciences and technology ; Incremental learning ; Information systems. Data bases ; Learning ; Memory organisation. Data processing ; Neural networks ; Scalability ; Software ; Studies</subject><ispartof>Computers &amp; industrial engineering, 2002-09, Vol.43 (4), p.677-692</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-c81a631f302c3e922d67990cad68cb15362aa6fa6c712dd812af4c893712d6643</citedby><cites>FETCH-LOGICAL-c364t-c81a631f302c3e922d67990cad68cb15362aa6fa6c712dd812af4c893712d6643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835202001328$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13903616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Nong</creatorcontrib><creatorcontrib>Li, Xiangyang</creatorcontrib><title>A scalable, incremental learning algorithm for classification problems</title><title>Computers &amp; industrial engineering</title><description>In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Exact sciences and technology</subject><subject>Incremental learning</subject><subject>Information systems. Data bases</subject><subject>Learning</subject><subject>Memory organisation. Data processing</subject><subject>Neural networks</subject><subject>Scalability</subject><subject>Software</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKePIBRBULB6krRpeyVjOBUGXqjX4ew0mRldq0kn-PambuilEAgHvv_8nI-xUw7XHLi6eQapIC1lLi5AXAJwKdJyj414WVQp5Dnss9EvcsiOQlgBQJZXfMRmkyQQNrhozFXiWvJmbdoem6Qx6FvXLhNslp13_ds6sZ1PqMEQnHWEveva5N13MbkOx-zAYhPMye4fs9fZ3cv0IZ0_3T9OJ_OUpMr6lEqOSnIrQZA0lRC1KqoKCGtV0oLnUglEZVFRwUVdl1ygzais5DAqlckxO9vujcUfGxN6veo2vo2VWnBZZEoUA5RvIfJdCN5Y_e7dGv2X5qAHY_rHmB50aIhvMBanMTvfLcfBifXYkgt_YVnFGFeRu91yJl766YzXgZxpydTOG-p13bl_mr4BsAF-wg</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Ye, Nong</creator><creator>Li, Xiangyang</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020901</creationdate><title>A scalable, incremental learning algorithm for classification problems</title><author>Ye, Nong ; Li, Xiangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c81a631f302c3e922d67990cad68cb15362aa6fa6c712dd812af4c893712d6643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Exact sciences and technology</topic><topic>Incremental learning</topic><topic>Information systems. Data bases</topic><topic>Learning</topic><topic>Memory organisation. Data processing</topic><topic>Neural networks</topic><topic>Scalability</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Nong</creatorcontrib><creatorcontrib>Li, Xiangyang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Nong</au><au>Li, Xiangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalable, incremental learning algorithm for classification problems</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>43</volume><issue>4</issue><spage>677</spage><epage>692</epage><pages>677-692</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>In this paper a novel data mining algorithm, Clustering and Classification Algorithm-Supervised (CCA-S), is introduced. CCA-S enables the scalable, incremental learning of a non-hierarchical cluster structure from training data. This cluster structure serves as a function to map the attribute values of new data to the target class of these data, that is, classify new data. CCA-S utilizes both the distance and the target class of training data points to derive the cluster structure. In this paper, we first present problems with many existing data mining algorithms for classification problems, such as decision trees, artificial neural networks, in scalable and incremental learning. We then describe CCA-S and discuss its advantages in scalable, incremental learning. The testing results of applying CCA-S to several common data sets for classification problems are presented. The testing results show that the classification performance of CCA-S is comparable to the other data mining algorithms such as decision trees, artificial neural networks and discriminant analysis.</abstract><cop>Seoul</cop><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0360-8352(02)00132-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2002-09, Vol.43 (4), p.677-692
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_journals_213746274
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Classification
Computer science
control theory
systems
Data mining
Decision trees
Discriminant analysis
Exact sciences and technology
Incremental learning
Information systems. Data bases
Learning
Memory organisation. Data processing
Neural networks
Scalability
Software
Studies
title A scalable, incremental learning algorithm for classification problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalable,%20incremental%20learning%20algorithm%20for%20classification%20problems&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Ye,%20Nong&rft.date=2002-09-01&rft.volume=43&rft.issue=4&rft.spage=677&rft.epage=692&rft.pages=677-692&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/S0360-8352(02)00132-8&rft_dat=%3Cproquest_cross%3E228029231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213746274&rft_id=info:pmid/&rft_els_id=S0360835202001328&rfr_iscdi=true