Detection of Broken Rotor Bars Fault in Induction Motors by Using an Improved MUSIC and Least-Squares Amplitude Estimation
The frequencies and amplitudes of the broken rotor bar (BRB) fault features are the basis for the accurate diagnosis of the BRB fault. However, how to accurately detect their frequency and amplitudes has always been a difficult problem for induction motor fault detection. For this problem, a new fau...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Shi, Liping Duan, Sen Wang, Panpan Lu, Junjie Han, Li |
description | The frequencies and amplitudes of the broken rotor bar (BRB) fault features are the basis for the accurate diagnosis of the BRB fault. However, how to accurately detect their frequency and amplitudes has always been a difficult problem for induction motor fault detection. For this problem, a new fault detection method based on an improved multiple signal classification (MUSIC) and least-squares magnitude estimation is proposed. First, since the fixed-step traversal search reduces the computational efficiency of MUSIC, a niche bare-bones particle swarm optimization (NBPSO) for multimodal peaks search is proposed to improve MUSIC, which is used to compute the frequency values of fault-related and fundamental components in stator current signal. Second, using these frequency values, a fault current signal model is established to convert the magnitude estimation problem into a linear least-squares problem. On this basis, the amplitudes and phases of fault-related and fundamental components could be estimated accurately with the singular value decomposition (SVD). A simulation signal is used to test the new method and the results show that the proposed method not only has higher frequency resolution, but also improves estimation accuracy of parameters greatly even with short data window. Finally, experiments for a real induction motor are performed, and the effectiveness and superiority of the proposed method are proved again. |
doi_str_mv | 10.1155/2018/5942890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137398463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137398463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-13fd31297509950f8c79c8bada068396c92ca9f17d46674a932f35ff941c73c73</originalsourceid><addsrcrecordid>eNqF0E1LwzAYB_AiCs7pzbMEPGo1L02bHLe56WBDcA68lSwv2rk1W5Iq89Ob0YFHIZCQ58eTJ_8kuUTwDiFK7zFE7J7yDDMOj5IOojlJKcqK43iGOEsRJm-nyZn3Swgxooh1kp8HHbQMla2BNaDv7KeuwYsN1oG-cB6MRLMKoKrBuFZN66b7qgeLHZj7qn4HIhbXG2e_tALT-Ww8iDcKTLTwIZ1tG-G0B731ZlWFRmkw9KFai32j8-TEiJXXF4e9m8xHw9fBUzp5fhwPepNUkhyGFBGjCMK8oJBzCg2TBZdsIZSAOSM8lxxLwQ0qVJbnRSY4wYZQY3iGZEHi6ibXbd8447bRPpRL27g6PlliRArCWZaTqG5bJZ313mlTblwc1O1KBMt9uuU-3fKQbuQ3Lf-oaiW-q__0Vat1NNqIP40hi38jv4C1gsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137398463</pqid></control><display><type>article</type><title>Detection of Broken Rotor Bars Fault in Induction Motors by Using an Improved MUSIC and Least-Squares Amplitude Estimation</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Shi, Liping ; Duan, Sen ; Wang, Panpan ; Lu, Junjie ; Han, Li</creator><contributor>Jesus, Isabel S. ; Isabel S Jesus</contributor><creatorcontrib>Shi, Liping ; Duan, Sen ; Wang, Panpan ; Lu, Junjie ; Han, Li ; Jesus, Isabel S. ; Isabel S Jesus</creatorcontrib><description>The frequencies and amplitudes of the broken rotor bar (BRB) fault features are the basis for the accurate diagnosis of the BRB fault. However, how to accurately detect their frequency and amplitudes has always been a difficult problem for induction motor fault detection. For this problem, a new fault detection method based on an improved multiple signal classification (MUSIC) and least-squares magnitude estimation is proposed. First, since the fixed-step traversal search reduces the computational efficiency of MUSIC, a niche bare-bones particle swarm optimization (NBPSO) for multimodal peaks search is proposed to improve MUSIC, which is used to compute the frequency values of fault-related and fundamental components in stator current signal. Second, using these frequency values, a fault current signal model is established to convert the magnitude estimation problem into a linear least-squares problem. On this basis, the amplitudes and phases of fault-related and fundamental components could be estimated accurately with the singular value decomposition (SVD). A simulation signal is used to test the new method and the results show that the proposed method not only has higher frequency resolution, but also improves estimation accuracy of parameters greatly even with short data window. Finally, experiments for a real induction motor are performed, and the effectiveness and superiority of the proposed method are proved again.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/5942890</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Amplitudes ; Computer simulation ; Computing time ; Decomposition ; Eigenvalues ; Electrical engineering ; Engineering ; Fault detection ; Fault diagnosis ; Induction motors ; Least squares method ; Methods ; Noise ; Parameter estimation ; Particle swarm optimization ; Signal classification ; Signal processing ; Singular value decomposition ; Test procedures</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-12</ispartof><rights>Copyright © 2018 Junjie Lu et al.</rights><rights>Copyright © 2018 Junjie Lu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-13fd31297509950f8c79c8bada068396c92ca9f17d46674a932f35ff941c73c73</citedby><cites>FETCH-LOGICAL-c360t-13fd31297509950f8c79c8bada068396c92ca9f17d46674a932f35ff941c73c73</cites><orcidid>0000-0003-0193-4166 ; 0000-0002-2086-1786 ; 0000-0002-3659-802X ; 0000-0002-0821-3305 ; 0000-0003-2581-6113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Jesus, Isabel S.</contributor><contributor>Isabel S Jesus</contributor><creatorcontrib>Shi, Liping</creatorcontrib><creatorcontrib>Duan, Sen</creatorcontrib><creatorcontrib>Wang, Panpan</creatorcontrib><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>Han, Li</creatorcontrib><title>Detection of Broken Rotor Bars Fault in Induction Motors by Using an Improved MUSIC and Least-Squares Amplitude Estimation</title><title>Mathematical problems in engineering</title><description>The frequencies and amplitudes of the broken rotor bar (BRB) fault features are the basis for the accurate diagnosis of the BRB fault. However, how to accurately detect their frequency and amplitudes has always been a difficult problem for induction motor fault detection. For this problem, a new fault detection method based on an improved multiple signal classification (MUSIC) and least-squares magnitude estimation is proposed. First, since the fixed-step traversal search reduces the computational efficiency of MUSIC, a niche bare-bones particle swarm optimization (NBPSO) for multimodal peaks search is proposed to improve MUSIC, which is used to compute the frequency values of fault-related and fundamental components in stator current signal. Second, using these frequency values, a fault current signal model is established to convert the magnitude estimation problem into a linear least-squares problem. On this basis, the amplitudes and phases of fault-related and fundamental components could be estimated accurately with the singular value decomposition (SVD). A simulation signal is used to test the new method and the results show that the proposed method not only has higher frequency resolution, but also improves estimation accuracy of parameters greatly even with short data window. Finally, experiments for a real induction motor are performed, and the effectiveness and superiority of the proposed method are proved again.</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Electrical engineering</subject><subject>Engineering</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Induction motors</subject><subject>Least squares method</subject><subject>Methods</subject><subject>Noise</subject><subject>Parameter estimation</subject><subject>Particle swarm optimization</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Singular value decomposition</subject><subject>Test procedures</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LwzAYB_AiCs7pzbMEPGo1L02bHLe56WBDcA68lSwv2rk1W5Iq89Ob0YFHIZCQ58eTJ_8kuUTwDiFK7zFE7J7yDDMOj5IOojlJKcqK43iGOEsRJm-nyZn3Swgxooh1kp8HHbQMla2BNaDv7KeuwYsN1oG-cB6MRLMKoKrBuFZN66b7qgeLHZj7qn4HIhbXG2e_tALT-Ww8iDcKTLTwIZ1tG-G0B731ZlWFRmkw9KFai32j8-TEiJXXF4e9m8xHw9fBUzp5fhwPepNUkhyGFBGjCMK8oJBzCg2TBZdsIZSAOSM8lxxLwQ0qVJbnRSY4wYZQY3iGZEHi6ibXbd8447bRPpRL27g6PlliRArCWZaTqG5bJZ313mlTblwc1O1KBMt9uuU-3fKQbuQ3Lf-oaiW-q__0Vat1NNqIP40hi38jv4C1gsA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shi, Liping</creator><creator>Duan, Sen</creator><creator>Wang, Panpan</creator><creator>Lu, Junjie</creator><creator>Han, Li</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0193-4166</orcidid><orcidid>https://orcid.org/0000-0002-2086-1786</orcidid><orcidid>https://orcid.org/0000-0002-3659-802X</orcidid><orcidid>https://orcid.org/0000-0002-0821-3305</orcidid><orcidid>https://orcid.org/0000-0003-2581-6113</orcidid></search><sort><creationdate>20180101</creationdate><title>Detection of Broken Rotor Bars Fault in Induction Motors by Using an Improved MUSIC and Least-Squares Amplitude Estimation</title><author>Shi, Liping ; Duan, Sen ; Wang, Panpan ; Lu, Junjie ; Han, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-13fd31297509950f8c79c8bada068396c92ca9f17d46674a932f35ff941c73c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Electrical engineering</topic><topic>Engineering</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Induction motors</topic><topic>Least squares method</topic><topic>Methods</topic><topic>Noise</topic><topic>Parameter estimation</topic><topic>Particle swarm optimization</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Singular value decomposition</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Liping</creatorcontrib><creatorcontrib>Duan, Sen</creatorcontrib><creatorcontrib>Wang, Panpan</creatorcontrib><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>Han, Li</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Liping</au><au>Duan, Sen</au><au>Wang, Panpan</au><au>Lu, Junjie</au><au>Han, Li</au><au>Jesus, Isabel S.</au><au>Isabel S Jesus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Broken Rotor Bars Fault in Induction Motors by Using an Improved MUSIC and Least-Squares Amplitude Estimation</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The frequencies and amplitudes of the broken rotor bar (BRB) fault features are the basis for the accurate diagnosis of the BRB fault. However, how to accurately detect their frequency and amplitudes has always been a difficult problem for induction motor fault detection. For this problem, a new fault detection method based on an improved multiple signal classification (MUSIC) and least-squares magnitude estimation is proposed. First, since the fixed-step traversal search reduces the computational efficiency of MUSIC, a niche bare-bones particle swarm optimization (NBPSO) for multimodal peaks search is proposed to improve MUSIC, which is used to compute the frequency values of fault-related and fundamental components in stator current signal. Second, using these frequency values, a fault current signal model is established to convert the magnitude estimation problem into a linear least-squares problem. On this basis, the amplitudes and phases of fault-related and fundamental components could be estimated accurately with the singular value decomposition (SVD). A simulation signal is used to test the new method and the results show that the proposed method not only has higher frequency resolution, but also improves estimation accuracy of parameters greatly even with short data window. Finally, experiments for a real induction motor are performed, and the effectiveness and superiority of the proposed method are proved again.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/5942890</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0193-4166</orcidid><orcidid>https://orcid.org/0000-0002-2086-1786</orcidid><orcidid>https://orcid.org/0000-0002-3659-802X</orcidid><orcidid>https://orcid.org/0000-0002-0821-3305</orcidid><orcidid>https://orcid.org/0000-0003-2581-6113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2137398463 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Amplitudes Computer simulation Computing time Decomposition Eigenvalues Electrical engineering Engineering Fault detection Fault diagnosis Induction motors Least squares method Methods Noise Parameter estimation Particle swarm optimization Signal classification Signal processing Singular value decomposition Test procedures |
title | Detection of Broken Rotor Bars Fault in Induction Motors by Using an Improved MUSIC and Least-Squares Amplitude Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Broken%20Rotor%20Bars%20Fault%20in%20Induction%20Motors%20by%20Using%20an%20Improved%20MUSIC%20and%20Least-Squares%20Amplitude%20Estimation&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Shi,%20Liping&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/5942890&rft_dat=%3Cproquest_cross%3E2137398463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137398463&rft_id=info:pmid/&rfr_iscdi=true |