Genetic variation in an orchardgrass population promises successful direct or indirect selection of superior drought tolerant genotypes

Improvement in drought tolerance is an important component of forage grass breeding. To assess the potential of selecting drought tolerant genotypes of orchardgrass, a polycross population was created in 2010 and evaluated in the field under normal and drought stress conditions during 2011–2013. Dro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant breeding 2018-12, Vol.137 (6), p.928-935
Hauptverfasser: Abtahi, Mozhgan, Majidi, Mohammad Mahdi, Hoseini, Behnam, Mirlohi, Aghafakhr, Araghi, Bahram, Hughes, Nia, Rognli, Odd Arne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 6
container_start_page 928
container_title Plant breeding
container_volume 137
creator Abtahi, Mozhgan
Majidi, Mohammad Mahdi
Hoseini, Behnam
Mirlohi, Aghafakhr
Araghi, Bahram
Hughes, Nia
Rognli, Odd Arne
description Improvement in drought tolerance is an important component of forage grass breeding. To assess the potential of selecting drought tolerant genotypes of orchardgrass, a polycross population was created in 2010 and evaluated in the field under normal and drought stress conditions during 2011–2013. Drought stress reduced performance in forage yield, growth characteristics, and most of the physiological traits measured, but increased carotenoid content, proline content, and the chlorophyll a/b ratio. High estimates of narrow‐sense heritability for chlorophyll and carotenoid content, as well as forage yield components, indicated that phenotypic selection would be successful in achieving genetic progress. Indirect selection to improve forage yield under drought stress conditions was efficient through selecting for chlorophyll a, chlorophyll b, total chlorophyll and carotenoid content. These physiological traits were also significantly associated with drought tolerance index. Overall, families 5, 7, 8, 13, 14 and 24 with high stress tolerance index values and high forage yield under both water conditions were identified as suitable families for breeding drought adaptive varieties.
doi_str_mv 10.1111/pbr.12657
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137341603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137341603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-68bc6f6e09aca1fbd7d0ef00a41c69f916c276619526e1d35d815e55d7f6eee63</originalsourceid><addsrcrecordid>eNp1kMFOAyEQhonRxFo9-AYknjxsC8sC3aM2Wk2aaIyeCYXZlma7rLCr6RP42lK3V7kMZL5vJvwIXVMyoelM21WY0FxweYJGtGBlRnjOTtGIUFlmJS_oObqIcUsObyZH6GcBDXTO4C8dnO6cb7BrsG6wD2ajg10HHSNufdvXQ7cNfuciRBx7YyDGqq-xdQFMl5TkHu8R6lQOgq8S2kJwqW2D79ebDne-hqCbDq-h8d2-hXiJzipdR7g61jH6eHx4nz9ly5fF8_xumZm8lDITs5URlQBSaqNptbLSEqgI0QU1oqxKKkwuhaAlzwVQy7idUQ6cW5kkAMHG6GaYm_7x2UPs1Nb3oUkrVU6ZZAUVhCXqdqBM8DEGqFQb3E6HvaJEHXJWKWf1l3NipwP77WrY_w-q1_u3wfgF2ZyDVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137341603</pqid></control><display><type>article</type><title>Genetic variation in an orchardgrass population promises successful direct or indirect selection of superior drought tolerant genotypes</title><source>Wiley Online Library All Journals</source><creator>Abtahi, Mozhgan ; Majidi, Mohammad Mahdi ; Hoseini, Behnam ; Mirlohi, Aghafakhr ; Araghi, Bahram ; Hughes, Nia ; Rognli, Odd Arne</creator><contributor>Rognli, Odd Arne</contributor><creatorcontrib>Abtahi, Mozhgan ; Majidi, Mohammad Mahdi ; Hoseini, Behnam ; Mirlohi, Aghafakhr ; Araghi, Bahram ; Hughes, Nia ; Rognli, Odd Arne ; Rognli, Odd Arne</creatorcontrib><description>Improvement in drought tolerance is an important component of forage grass breeding. To assess the potential of selecting drought tolerant genotypes of orchardgrass, a polycross population was created in 2010 and evaluated in the field under normal and drought stress conditions during 2011–2013. Drought stress reduced performance in forage yield, growth characteristics, and most of the physiological traits measured, but increased carotenoid content, proline content, and the chlorophyll a/b ratio. High estimates of narrow‐sense heritability for chlorophyll and carotenoid content, as well as forage yield components, indicated that phenotypic selection would be successful in achieving genetic progress. Indirect selection to improve forage yield under drought stress conditions was efficient through selecting for chlorophyll a, chlorophyll b, total chlorophyll and carotenoid content. These physiological traits were also significantly associated with drought tolerance index. Overall, families 5, 7, 8, 13, 14 and 24 with high stress tolerance index values and high forage yield under both water conditions were identified as suitable families for breeding drought adaptive varieties.</description><identifier>ISSN: 0179-9541</identifier><identifier>EISSN: 1439-0523</identifier><identifier>DOI: 10.1111/pbr.12657</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Breeding ; Carotenoids ; Chlorophyll ; Dactylis ; Drought ; Drought resistance ; Genetic diversity ; Genotypes ; Heritability ; orchardgrass ; Physiology ; Plant growth ; Proline ; selection ; Stresses</subject><ispartof>Plant breeding, 2018-12, Vol.137 (6), p.928-935</ispartof><rights>2018 Blackwell Verlag GmbH</rights><rights>Copyright © 2018 Blackwell Verlag GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-68bc6f6e09aca1fbd7d0ef00a41c69f916c276619526e1d35d815e55d7f6eee63</citedby><cites>FETCH-LOGICAL-c2977-68bc6f6e09aca1fbd7d0ef00a41c69f916c276619526e1d35d815e55d7f6eee63</cites><orcidid>0000-0002-3445-5770 ; 0000-0003-4746-9036 ; 0000-0001-8235-5005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbr.12657$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbr.12657$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><contributor>Rognli, Odd Arne</contributor><creatorcontrib>Abtahi, Mozhgan</creatorcontrib><creatorcontrib>Majidi, Mohammad Mahdi</creatorcontrib><creatorcontrib>Hoseini, Behnam</creatorcontrib><creatorcontrib>Mirlohi, Aghafakhr</creatorcontrib><creatorcontrib>Araghi, Bahram</creatorcontrib><creatorcontrib>Hughes, Nia</creatorcontrib><creatorcontrib>Rognli, Odd Arne</creatorcontrib><title>Genetic variation in an orchardgrass population promises successful direct or indirect selection of superior drought tolerant genotypes</title><title>Plant breeding</title><description>Improvement in drought tolerance is an important component of forage grass breeding. To assess the potential of selecting drought tolerant genotypes of orchardgrass, a polycross population was created in 2010 and evaluated in the field under normal and drought stress conditions during 2011–2013. Drought stress reduced performance in forage yield, growth characteristics, and most of the physiological traits measured, but increased carotenoid content, proline content, and the chlorophyll a/b ratio. High estimates of narrow‐sense heritability for chlorophyll and carotenoid content, as well as forage yield components, indicated that phenotypic selection would be successful in achieving genetic progress. Indirect selection to improve forage yield under drought stress conditions was efficient through selecting for chlorophyll a, chlorophyll b, total chlorophyll and carotenoid content. These physiological traits were also significantly associated with drought tolerance index. Overall, families 5, 7, 8, 13, 14 and 24 with high stress tolerance index values and high forage yield under both water conditions were identified as suitable families for breeding drought adaptive varieties.</description><subject>Breeding</subject><subject>Carotenoids</subject><subject>Chlorophyll</subject><subject>Dactylis</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Genetic diversity</subject><subject>Genotypes</subject><subject>Heritability</subject><subject>orchardgrass</subject><subject>Physiology</subject><subject>Plant growth</subject><subject>Proline</subject><subject>selection</subject><subject>Stresses</subject><issn>0179-9541</issn><issn>1439-0523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOAyEQhonRxFo9-AYknjxsC8sC3aM2Wk2aaIyeCYXZlma7rLCr6RP42lK3V7kMZL5vJvwIXVMyoelM21WY0FxweYJGtGBlRnjOTtGIUFlmJS_oObqIcUsObyZH6GcBDXTO4C8dnO6cb7BrsG6wD2ajg10HHSNufdvXQ7cNfuciRBx7YyDGqq-xdQFMl5TkHu8R6lQOgq8S2kJwqW2D79ebDne-hqCbDq-h8d2-hXiJzipdR7g61jH6eHx4nz9ly5fF8_xumZm8lDITs5URlQBSaqNptbLSEqgI0QU1oqxKKkwuhaAlzwVQy7idUQ6cW5kkAMHG6GaYm_7x2UPs1Nb3oUkrVU6ZZAUVhCXqdqBM8DEGqFQb3E6HvaJEHXJWKWf1l3NipwP77WrY_w-q1_u3wfgF2ZyDVg</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Abtahi, Mozhgan</creator><creator>Majidi, Mohammad Mahdi</creator><creator>Hoseini, Behnam</creator><creator>Mirlohi, Aghafakhr</creator><creator>Araghi, Bahram</creator><creator>Hughes, Nia</creator><creator>Rognli, Odd Arne</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-3445-5770</orcidid><orcidid>https://orcid.org/0000-0003-4746-9036</orcidid><orcidid>https://orcid.org/0000-0001-8235-5005</orcidid></search><sort><creationdate>201812</creationdate><title>Genetic variation in an orchardgrass population promises successful direct or indirect selection of superior drought tolerant genotypes</title><author>Abtahi, Mozhgan ; Majidi, Mohammad Mahdi ; Hoseini, Behnam ; Mirlohi, Aghafakhr ; Araghi, Bahram ; Hughes, Nia ; Rognli, Odd Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-68bc6f6e09aca1fbd7d0ef00a41c69f916c276619526e1d35d815e55d7f6eee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Breeding</topic><topic>Carotenoids</topic><topic>Chlorophyll</topic><topic>Dactylis</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Genetic diversity</topic><topic>Genotypes</topic><topic>Heritability</topic><topic>orchardgrass</topic><topic>Physiology</topic><topic>Plant growth</topic><topic>Proline</topic><topic>selection</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abtahi, Mozhgan</creatorcontrib><creatorcontrib>Majidi, Mohammad Mahdi</creatorcontrib><creatorcontrib>Hoseini, Behnam</creatorcontrib><creatorcontrib>Mirlohi, Aghafakhr</creatorcontrib><creatorcontrib>Araghi, Bahram</creatorcontrib><creatorcontrib>Hughes, Nia</creatorcontrib><creatorcontrib>Rognli, Odd Arne</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abtahi, Mozhgan</au><au>Majidi, Mohammad Mahdi</au><au>Hoseini, Behnam</au><au>Mirlohi, Aghafakhr</au><au>Araghi, Bahram</au><au>Hughes, Nia</au><au>Rognli, Odd Arne</au><au>Rognli, Odd Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variation in an orchardgrass population promises successful direct or indirect selection of superior drought tolerant genotypes</atitle><jtitle>Plant breeding</jtitle><date>2018-12</date><risdate>2018</risdate><volume>137</volume><issue>6</issue><spage>928</spage><epage>935</epage><pages>928-935</pages><issn>0179-9541</issn><eissn>1439-0523</eissn><abstract>Improvement in drought tolerance is an important component of forage grass breeding. To assess the potential of selecting drought tolerant genotypes of orchardgrass, a polycross population was created in 2010 and evaluated in the field under normal and drought stress conditions during 2011–2013. Drought stress reduced performance in forage yield, growth characteristics, and most of the physiological traits measured, but increased carotenoid content, proline content, and the chlorophyll a/b ratio. High estimates of narrow‐sense heritability for chlorophyll and carotenoid content, as well as forage yield components, indicated that phenotypic selection would be successful in achieving genetic progress. Indirect selection to improve forage yield under drought stress conditions was efficient through selecting for chlorophyll a, chlorophyll b, total chlorophyll and carotenoid content. These physiological traits were also significantly associated with drought tolerance index. Overall, families 5, 7, 8, 13, 14 and 24 with high stress tolerance index values and high forage yield under both water conditions were identified as suitable families for breeding drought adaptive varieties.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/pbr.12657</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3445-5770</orcidid><orcidid>https://orcid.org/0000-0003-4746-9036</orcidid><orcidid>https://orcid.org/0000-0001-8235-5005</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0179-9541
ispartof Plant breeding, 2018-12, Vol.137 (6), p.928-935
issn 0179-9541
1439-0523
language eng
recordid cdi_proquest_journals_2137341603
source Wiley Online Library All Journals
subjects Breeding
Carotenoids
Chlorophyll
Dactylis
Drought
Drought resistance
Genetic diversity
Genotypes
Heritability
orchardgrass
Physiology
Plant growth
Proline
selection
Stresses
title Genetic variation in an orchardgrass population promises successful direct or indirect selection of superior drought tolerant genotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variation%20in%20an%20orchardgrass%20population%20promises%20successful%20direct%20or%20indirect%20selection%20of%20superior%20drought%20tolerant%20genotypes&rft.jtitle=Plant%20breeding&rft.au=Abtahi,%20Mozhgan&rft.date=2018-12&rft.volume=137&rft.issue=6&rft.spage=928&rft.epage=935&rft.pages=928-935&rft.issn=0179-9541&rft.eissn=1439-0523&rft_id=info:doi/10.1111/pbr.12657&rft_dat=%3Cproquest_cross%3E2137341603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137341603&rft_id=info:pmid/&rfr_iscdi=true